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ABSTRACT

Adaptive production systems are defined and uscd to illustrate adaptive
techniques in production system construction. A learning paradigm is des-

cribed within the framework of adaptive production systems, and is applied

to a simple rote learning task, a nonsense syllable association and discrim-

b ination task, and a serial pattern acquisition task. It is shown that with
the appropriate production building mechanism, all three tasks can be
solved using similar production system learning techniques.

The adaptive production systems are quite parsimonious; that is, the
learning program is represented in exactly the same fashion as the information
being learned. Both are represented as production rules in a single production
system. This eliminates the need for two types of control in the system;
one for activating the learning mechanism and another for accessing the

~ information learned. In other words, the concepts learned are not passive,
static structures which must be given a special interpretation, but rather

are self-contained programs which are executed automatically in the course

of executing the learning mechanism.




ADAPTIVE PRODUCTION SYSTEMS

by D. A. Waterman

This paper presents recent results in the design and use of adaptive or
self-modifying production systems. A production system (Newell and Simon,
1972; Newell, 1973) can be thought of as simply a collection of production
rules, that is, condition-action pairs, C => A, where the left side of each pair
is a set of conditions relevant to the contents of a particular data base or
working memory and the right side is a list of actions, each of which can modify
the contents of that memory. The production systems to be discussed are written
in PAS-II (Waterman and Newell, 1973; Waterman, 1973) and each is represented as
a set of ordered production rules as illustrated below.

C => A

1 1
C2 => Az

The control cycle consists of selecting one production rule from the :et and
executing its actions. The first rule (from top to bottom) whose conditions
match the working memury is the one selected. After the actions associated
with the selected rule are executed the cycle starts again, from the top.
This process continues until no conditions match.

An adaptive or self-modifying production system is defined to be one
which, through its actions, can modify its own production 1ules. There are
three principal ways such modification can take place: by adding new rules,
by deleting old rules, and by changing existing rules. The adaptive pro-
duction systems to be described ir this ,aper use just one of these three

modification techniques: addition of new rules. Thus the adaptive production
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systems not only contain actions which can modify the contents of working
memory but also acti.s which can add new rules to the system. *

We will ncw postulate a common machinery for performing a variety of
learning tasks. This machinery consists of (1) a produc.ion svstem interpreter
for ordered production svstems, (2) a production system representation for
learning programs, (3) production rule actiens capable of constructing and
adding new rules to the system, and (4) the learning technique of adding new

production rules above error-causing rules to correct the errors. Three types

of learning tasks are investigated: arithmetic, verbal association, and series

completion. The primary purpose of the investigation is to define and clarify
the machinery needed for these tasks and show how it can be implemented within
an adaptive production system framework.

The programs for all three tasks are written as short production systems

which access a single working memory composed of an ordered set of memory

elements. When production rules "fire," i.e., their actions are executed,

they modify working memory by adding, deleting, or rearranging memory elements.
Since rules fire only when their conditions match memory, such changes may
cause different rules to fire and new memory.modificaticns to be made. Thus
the system cycles through various states, using working memory as a storage
buffer for holding initialization data and int.rmediate results. Most of the
actions are designed only to modify working memory, however a few are able

to modify the production system itself by removing elements from working mem-

ory, assembling these elements into a production rule, and adding this pro-

duction rule to the production system. These actions give the system its

self-modification capability.

*The production rules are not considered part of the data base or memory .
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The arithmetic learning task is relatively simple. It consists of learning
toadd or divide integers given only an ordering over the set of integers as
initialization data. Whenthe production system is given two integers to
add, it uses the ordering to create a set of production rules which partially g
define the successor function for integers, and then uses this newly defined
function to calculate the desired sum. After each sum is caiculated, other
production rules are added which effectively define the addition table for
integers. Thus in the course of problem solving the system learns both the
successor function and addition rules.

The verbal association task involves learning pairs of nonsense syllables,
such that given the first syllable of the pair the system can respond with the
second. The program which performs this task is essentially a production sys-
tem implementation of EPAM (Feigenbaum, 1963). Instead of growing an EPAM
discrimination net, the system creates a set of production rules which are

L equivalent to such a net. Two implementations of EPAM are discussed, an ele-
mentary one which exhibits stimulus generalization, and a more elaborate one
which exhibits both stimulus and response generalization.

The series completion task consists of presenting a short sequence of
symbols, such as AABBAABB, and then requesting a prediction of what symbols
should come next in the sequence. The production systems for series com-
pletion crcate production rules which represent hypotheses about which symbol
contexts lead to which new symbols, i.2., "two A's always lead to a B." These
rules, taken together, constitute the concept of the series and are used by
the production systems to predict new symbols. Two types of series completion
production systems are discussed. The first handles simple series, that is,
series which involve repetition and don't require knowledge about external

alphabets; i.e., AMMAMMAMM. The second handles more complicated series which

require the use of a next or prior relation on some alphabet, i.e., AABBCCLD.




The paper is organized as follows: section II contains a description
of the PAS-1I production system interpreter, section III describes adaptive
production systems for arithmetic tasks, and section IV discusses production
System simulations of EPAM. Section V describes production systems foi series
completion tasks, and section VI contains concluding remarks about adaptive

production systems.

II. PAS-II PRODUCTION SYSTEM

PAS-11 is an interactive information processing system designed to aid
the user in analvzing verbal problem solving protocols. Within PAS-II the
user may write production systems and have them executed by the PAS production
System interpreter. This interpreter is modeled after PSG (Newell, 1972,

1973) and will interpret ordered production systems that access multiple data
bases or memories.

Preduction rules in the PAS system consist of condition-action pairs, where
the condition side is a set of conditions with implicit MEMBER and AND functions
and the action side is an ordered list of independent actions. For example,

a rule that would check memory STM to see if it contained both elements
(A) and (B), and if so would deposit elements (C) and (P} “nto STM would be
written:

(A (B) => (DEP (C)) (DEP (D)), (1)
where the action DEP deposits its argument into memory. Alsc necessary is a
definition of the initial contents of STM, such as:

1. STM = (A) (B).

All the production systems described in this paper access only a single memory,
ST™.
The control cycle of the PAS-II production system interpreter consists

of two major mechanisms:




1. RECOGNIZE: a production rule (condition-action pair), whose
conditions match (or satisfy) working memory is selected from
the ccllection of rules. If no rule matches working memory
the system halts.

2. ACT: the actions (right-hand side) of the selected rule are
executed, modifying working memory.

A cycle in the system is defined to be a single RECOGNIZE-ACT sequence.

RECOGNIZE. The RECOGNIZE mechanism in the production system inter-
preter selects a rule to be executed. When more than one rule matches the
working memory a conflict occurs, since RECOGNIZE must produce a single rule
for the ACT mechanism to work on. Conflict resolution consists of applying
some scheme which selects a particular rule from those that match memory.
The only conflict resolution scheme used in the production systems in this
Paper is that of priority ordering. Thus the rule recognized is just the
highest priority rule whose conditions match the data base.

The match mechanism in PAS assumes the conditions are in implicit
MEMBER and AND notation and scans the condition elements in order from left
to right checking to see if each element is in the working memory. When all
the condition elements in a rule match corresponding elements in memory, the
memory elements are automatically brought to the front of memory (just
before actions are executed) in the order specified in the rule. A memory
element can match only one condition element in any rule and the order of
the memory elements does not have to correspond to the order of the condition
elements. For example, the conditions (A) kB) (A) will match the memory
STM: (B) (A) (A), but not the memory (A) (B).

A condition element will match a memory element if the memory element
contains all the items the condition element contains, in the same order,
starting from the beginning of the memory element. Thus condition element
(AT) will match memory elements (A T), and (A T E) but not elements (A),

(TA), or (TAT).
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The match routine will search for the absence of a memory element if
the condition element is preceeded by a minus sign (-). Thus the conditions
(A) - (B) - (C) will match any memory which contains (A) but does not contain
(B) and also does not contain (©))z

Free variables* can be used in the condition elements and are denoted
xl, x2, ..., xn. When a match occurs each item in the memory element which
corresponds to a variable is bound to that variable. Then when a Lound var-
iable occurs in an action the value of the variable is used. For example,
if we have memory STM: (A) (B (L)) and the rule:

(x1) (B x2) => (DEP x2) |,
x1 will be bound to A, and x2 to (LY. The action taken will be to deposit
(L) into memory.

ACT. The ACT mechanism takes the rule specified by RECOGNIZE and executes
all its actions, one at a time, in order going from left to right. Then the
RECOGNIZE-ACT control cycle starts again and repeats until no rules match the
data base.

The specification of actions in a production system is critical since
to a large extent it determines the grain of the system. If the grain is too
coarse the system still functions, but a single actiorn may embody most of the
interesting activity and thus obscure it from view. The criterion in defining
actions seems to be to make the actions primitive enough so the trace of the
production system will exhibit the activity deemed interesting.

The PAS Production system actions to be described are primitive ones and
fall into two main categories: basic actions and modification actions. Only
the actions used in the exanles to be presented are discussed here. For the

complete set of actions available see the PAS-II Reference Manual (Waterman, 1973).

*Variables which have restricted donains may also be defined (Waterman, 1973).




Basic Actions. The basic actions used in the examples are shown below

with their definitions.
(DEP a): Deposit a into front of memory.
(REM a): Remove first occurrence of a from memory.
(REP 3.9_2): Replace a with g_in the E;h elerent of memory.
(SAY a): Print a. Any number of arguments are permitted.
(CLEAR a): All elements in memory are cleared (erased) except a.

(ATTEND): Read from the terminal, permitting user to insert information
into memory.

(STOP): Stop production system execut‘on.
The actions assume that memory is an ordered list of elements going from left
to right. Thus DEP places elements into memory at the left and REP counts
elements starting from the left. If the third argument to REP is omitted,
the interpretation s to replace a with b in the first element of memory.

Modification Actions. The modification actions are the embodiment of

the mechanism which gives the production system its adaptive or self-modifying

power. The total set of PAS modification actions are shown below with treir

definitions.

(COND a): Deposits (COND a) into memory and is exactly equivalent
to (DEP (COND a)).

(ACTION a): Deposits (ACTION a) into memory and is exactly equivalent
to (DEP (ACTION a)).

(MARK a): Marks each element in memory that just matched the condition
elements on the left side of the rule containing (MARK a).
An element e is marked by changing it to (a e).

(USED): This is a special case of MARK and is exactly equivalent to
(MARK USED).

(OLD): This is another special case of MARK and is exactly equivalent
to (MARK OLD).

(PROD a): Creates a production rule and inserts it into the production
system. The rule is created from all memory elements marked
(COND...) and (ACTION...). The new rule ic then inserted




just in front of the first production rule that contains,

in either its condition or action, an element identical to
any of the arguments of PROD. If no such rule is “~und, the
new rule is not inserted. If PROD has no arguments the rule
is irserted at the very beginning of the production system,
if it has the argument END, it is inserted at the end of the
system. In all cases all memory elements marked (COND...)
and (ACTICN...) are removed from memory .

The actions COND, ACTION, USED and OLD are clearly superfluous since
the same effect can ‘e obtained using DEP and MARK. They were implemented,
howecver, to make the production rules more readable.

The actions MARK and PROD are illustrated by the following simple example.
Assume the initial conditions shown below:

STM: (B) (A) (C) (ACTION (SAY DONE) (STOP)) (COND (C))

PS: 1. - (B) => (DEP (B))

2. (A) (B) => (MARK COND) (PROD (A))
9 3. (C) => (DEP (A))
When the production system PS is fired, rule 2 is the first to match STM.
The action (MARK COND) marks (A) and (B) and memory becomes:

STM:  (COND (A)) (COND (B)) (C) (ACTION (SAY DONE) (STOP)) (COND (C)).
Then the action (PROD (A)) creates a production out of the elements marked
COND and ACTION, removes these elements from STM, and puts the new production

immediately above the first rule that contains (A), in this case rule 2.

The resulting memory and production system are shown below.

; STM: ©)
’ PS: 1. - (B) => (DEP (B))
I i 1.5. (A) (B) (C) => (SAY DONE) (STOP)

2. (A) (B) => (MARK COND) (PROD (A))
3. (C) => (DEP (A))

After the insertion of rule 1.5 the production system execution continues,

finally terminating with the firing of rule 1.5.




Special Actions. The actions defined thus far are considered primitive

actions. It was necessary, however, to also define a small set of non-primi-
tive, problem specific actions for use in the verbal association and series
completion production systems. These were needed to make the production
system traces reflect the activity deemed interesting. These special actions:
SUCC, PERCCIVE, OBSERVE, OBSERVE1, OBSERVE2, and PRODS, are described in
detail in the next three sections.

Predecessor and Successor Actions. In the PAS production system predecessors

and successors on letters and integers can be accessed implicitly by placing
apost:-ophes before or after variables in either the condition or action part
of production rules. Thus the value of x1' is the.successor of the value

of x1, and the value of ''xl is the double predecessor of the value of xl.

The implicit predecessor and successor actions were rot used in the arithmetic
or verbal association production systems, but vere needed in the more complex
series completion systems. Also, the explicit successor action (SUCC) was

implemented to increase efficiency. It changes every memory element with a

number as the first item by replacing that number with its successor.

IIT. PRODUCTION SYSTEMS FOR ARITHMETIC TASKS

Two simple production systems will now be described, one for performing
addition of integers and one for division. These systems were designed to
illustrate adaptive production system techniques and to compare production
system programming with more conventional programming methods. They do not
attempt to model data on human performance in these tasks.

Addition. The production system for addition is shown in Fugude 1. It
consists of five production rules, the first two providing initialization, the
next two performing the addition, and the last adding rules which define the
successor function. The initialization rules fire only once, at the beginning

of the execution of the production systenm.




1. (READY) (ORDER X1) => (REP (READY) (COUNT X1)) (ATTEND)
2. (N X1) = (NN) = (S NN) => (DEP (NN X1)) .
3. (COUNT X1) (M X1) (NN £2) (N X3) => (SAY X2 IS THE ANSWER)
(COND (M X1) (N X3)) (ACTIO" (STOP))
(ACTION (SAY X2 IS THE ANSWER)) (PROD) (STOP)
4. (COUNT) (NN) => (REP (COUNT) (S COUNT)) (REP (NN) (S NN) 2)
5. (ORDER X1 X2) = (REP (X1 X2) (X2)) (COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD)

Figure 1. ADD: A Production System for
Addition of Integers
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When the action ATTEND is executed the system expects to be given two
integers (a and b) in the form (M a) (Nb). 7Tt then calcu'ates a + b and
prints the answer. The algorithm used to calcuiate the answer is illustrated

by the program below:

2.1 add(m,n) = count « o0; nn « n;

252 L1 if count = m then return(nn); (2)
2:8 count + s(count);

2.4 nn + s(nn);

2.5 go(L1);

Here count and nn are local variables and s is the successor function. Count
is initialized to zero and nn to n. Then count and nn are continuously incre-
mented by one, using the successor function, until count equals m. The
answer is then nn.

The ADD production system performs these steps with a few essential dif-

ferences. First, it has no successor function, consequently it creates a pro-

duction rule representation of the successor function by adding rules which
tell it how to find the successor for pvarticular integers. And second, once
a sum is calculated it adds a rule that produces the answer directly the next
time it is required. Thus it builds the addition table for integers.
There is a direct mapping, however, between the code in (2) and that

in Figure 1. Rules 1 and 2 in Figure 1 corfespond to line 2.1 of the above
program. Fule 3 corresponds to 2.2, and rule 4 to 2.3 and 2.4 above. Rule §
has no correspondent in (2) since the above code assumes the existence of the
successor function, while the production system code creates it. Note also
that 2.5 above, the GOTO statement, has no correspondent in Figure 1. In the

ADD production system the function of the GOTO statement and label is handled




12,

by two mechanisms: control cycle repetition, which permits unlimited looping;
and appropriate memory modification, which in this case makes rules 1 and 2
inoperative.

A trace of the ADD production system solving the problem 4 + 2 is shown
in Appendix I. Memory is assumed to initially contain two things: a ready
signal (READY) and an ordering over the set of integers (ORDER 01 2 3 4 5
6 78 9).* Notice that the system only adds successor rules when they are
needed for the computation. The second time the system is given 4 + 2 it
calculates it directly from the partial addition table just created. When
given other problems, such as 2 + 1, the su:cessor rules previously acquired
are remembered and used.

Division. The production sys*em for division is shown in Figure 2. This
time there are six production r:les; the first two provide initializa+ion,
the next three perform the division, and the last one creates successor and

predecessor rules when nceded.

As in the ADD system, the user gives the DIVIDE system two integers (a and b)

in the form (M a) (N b), and the system calculates a £ b, including the remainder.

This calculation is done according to the following program:

3.1 divide(m,n)

count « o; ans <+ o; remain <« m;

3.2 L1 if count = n then [ans + s(ans); count « o; remain « m]

35 else [ig m = o then return(ans, remain); (3)
3.4 m +< p(m); count <« s(counti];

3.5 go(L1};

Here count, ans, and remain are local variables, s is the successor function,

and p is the predecessor function. Basically, count is being incremented

*This orderin; should extend to 18 for the system to handle addition of all single
digit integers. It was kept to 9 for the sake of brevity in the trace.




1. (READY) => (REP (READY) (COUIT 0); (DEP (ANS 0)} (ATTEND)
2, (M X1) = (REMAIN) => (DEP (REMAIN X))
3. (ANS) (COUNT X1) (REMAIN X3) (N X1) (M X2) = (REP (ANS) (S ANS))
(REP (X!) (0) 2) (REP (X3) (X2) 3)
4. (M 0) (ANS X1) (REMAIN X2) = (S) => (SAY X1 WITH REMAINDER X2) (STOP)
5. (M) (COUNT) - (S) = (REP (M) (P M)) (REP (COUNT) (S COUNT) 2)
6. (ORDER X1 X2) = (GO) => (REP (X1 X2) (2)) (COND (P X3 X2))
(ACTION (REP (P X3 X2) (X3 X1))) (PROD (GO)) (COND (S X2 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD (READY))

Figure 2. DIVIDE: A Production System for
Division of Integers
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by one while m is being decremented by one until count = n. Then ans is
incremented, count reset to zero and the process continues until m = o.

The DIVIDE prodinction system uses the above algorithm but has no successor
or predecessor functions. Instead it creates production rule representations
of these functions by adding the appropriate rules when needsd. As before,
tﬁere is a direct mapping between the DIVIDE production system code and the
LISP-1ike code shown in (3) above. The initialization rules, 1 and 2 in Figure 2,
correspond to 3.1 above. Rule 3 corresponds to 3.2, 4 to 3.3, and 5 to 3.4.
Again, the production building rule, 6, has no correspondent in (3) since the
aboJ; program creates no new code. Note that the if-then-else statement in (3)
is quite easily mapped into the DIVIDE production system because of the priority
ordering of the production system rules. A trace of the DIVIDE system on the
problem 3 <+ 2 is shown in Appendix II. Again memory initially contains a ready
signal and an ordering over the set of integers. .To obtain the correct answer
"1 with remainder 1" the system added the predecessor and successor rules shown.

The production systems for arithmetic are self-modifying but not really
adaptive in the strict sense of the word. This is because they create new
rules, not on the basis of external feedback, but rather on the basis of
internal informati;n, i.e., the ordering on the set of integers. Furthermore
Tules are added only when needed to solve the problem at hand. This is a
good example of an explicit view of predetermined developmental potential.

The system has the capacity to develop the addition table or the successor

function on integers but does so only when the environment demands it.

—
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IV. PRODUCTION SYSTEM IMPLEMENTATIONS OF EPAM

EPAM (Feigenbaum, 1963; Feigenbaum and Simon, 1964) is a computer pro-
gram which simulates verbal learning behavior by memorizing three-letter
nonsense syllables prescnted in associate pairs or serial lists. The program
learns to predict the correct response when given a stimulus syllable by
growing a discrimination n~t composed of nodes which are tests on the values
of certain attributes of thc¢ letters in the nonsense syllables. Responses are
stored at the terminal nodes, and are retrieved by sorting the stimuli down
the net. A typical paired associate training sequence for this verbal
learning task is shown in Figure 3.

Two production system implementations of EPAM will ncw be discussed, each
using only the actions described in Section II plus a special action called
PERCEIVE. This is a problem-specific action which recognizes the type and
location of individual letters in a syllable, as shown below.

(PERCEIVE a b): Breaks syllable a into individual letters and tags

. these letters with b and a number specifying their
order in the syllable.
For example, the action (PERCEIVE PAX ?) when executed adds the elements
G P T(3X ) (2.4 % to memory, indicating that the first letter in the
syllable was P, the third X, and the second A. The elements are arranged
first, third, second, to reflect the serial position effect in verbal learning
(Deese and Kaufman, 1957).

The purpose of presenting the production system implementations of EPAM
is to show the relation between discrimination nets and ordered production
rules and to demonstrate the use of the modificatjon actions in a verbal

learning situation.




Stimulus

PAX
v BEK
CIT
& BUK
NAL
REB

NOJ

Response
CON

LUQ

DER
MAB
LEQ
MOL

PED

Figure 3. Paired Associate Tra1n1ng Sequence for Verbal
Learning Task.




EPAM1. The first implementation, called EPAM1, is shown in Figure 4.

Rules 1 and 2 are initialization rules only, the response and learning
mechanisms are embodied in the iast 5 rules. This simple version »f EPAM
grows a production system which is analogous to a discrimination net with
tests for stimulus letters (i.e., "is the 3rd letter R?") at the intermediate
nodes and complete responses at the terminil nodes. Consequently, the
Ssystem can exhibit retroactive inhibition and stimulus generalization but
not response generalization (Feigenbaum. 1963).

The operation of EPAM1 will be described by using an annotated listing
(shown below) of the trace of the program learning two pairs of syllables:

PAX-CON and PUM-JES. The program output is in upper case, the user input,

after the ATTEND function, is in lower case.
tfire
2 TRUE IN PS
OUTPUT FOR (ATTEND STIM) = (dep (stim pax))
STM: (STIM PAX) (READY)

1 TRUE IN PS
STM: (1 P 7) (3 X ?) (2 A?) (STIM PAX)

6 TRUE IN PS
?

OUTPUT FOR (ATTEND RESP) = (dep (resp con))
STM: (RESP CON) (REPLY (1P D (3X D (2A D
(STIM PAX) :

Initially STM contains the signal (READY), which causes rule 2 to fire
and the system to ask for the stimulus. Once the stinaulus (STIM PAX) is
obtained, rule 1 fires, adding the perceived stimulus components to memory as
shown above. Now rule 6 is the first to match STM. As it fires it prints a

question mark as the system's reply to the stimulus (i.e., it doesn't have 3

anything associated with the syllable PAX), adds this reply to memory, and asks

for the correct response.




1. (READY) (STIM X1) => (REM (READY)) (PERCEIVE X1 ?)
2. (READY) => (ATTEND STIM)
3. (REPLY) = (RESP) => (ATTEND RESP)
4. (REPLY X1) - (RESP X1) => (REP REPLY WRONG)
5. (USED X1) (WRONG X2) => (REP USED COND)
6. - (RESP) => (DEP (REPLY ?)) (SAY ?) (ATTEND RESP)
] 7. (X1 X2 ?) (RESP X3) (WRONG X4) => (COND (X1 X2 7))
(ACTION (USED) (DEP (REPLY X3)) (SAY X3)) (PROD (SAY X4)) (STOP)

Figure 4., EPAMl: A Production System
Implementation of EPAM

l
|
|
|
|
|



| 4 TRUE IN PS
r STM: (WRONG ?) (RESPCON) (1 P?)(3X N (2A D)
. (STIM PAX)

| 7 TRUE IN PS

| NOW INSERTING

(1 P?) => (USED) (DEP (REPLY CON)) (SAY CON)
ONLINE 55

STM: (1 P 7) (RESP CON) (WRONG D (3X ) (2A?)
(STIM PAX)
Since there is now a reply in memory (?) that does not match the correct

response CON) rule 4 matches and changes the label REPLY to WRONG. Finally

ﬁ rule 7 matches memory with the variables bound as follows: xl=1, x2=P,

. x3=CON, and x4=?. Thus when 7 is fired it adds (COND (1 P?)) and
(ACTION (USED) (DEP (REPLY CON)) (SAY CON)) to memory, removes them from

memory to create a new rule, and inserts that rule in front of the first rule

that contains (SAY ?), in this case rule 6.
xinitialize fire
INITIALIZED
2 TRUE IN PS
OUTPUT FOR (ATTEND STIM) = (dep (slim pum))
STM: (STIM PUM) (READY)

1 TRUE IN PS
STM: (1 P 2)(3M?)(2U7?)(STIM PUM)

5.5 TRUE IN PS
CON

STM: (REPLY CON) (USED(1P ) (3M?) (2 U ?)
(STIM PUM)

Before the second pair of syllables is presented, memory is initialized
back to its original contents: (READY), and the system is fired. Again rules
2 and 1 match and are fired in the process of obtaining and perceiving the
stimulus. But now the new rule, 5.5, matches memory and causes (1 P ?)

to be marked USED, and the system to reply CON and add the reply to memory.

This is an example of stimulus generalization: the system confused PUM with
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PAX since it was only roticing first letters.

3 TkUE IN PS
OUTPUT FOR (ATTEND RESP) = (dep (resp ies))
STM: (RESP JES) (REPLY CON) (USED (1 F: ) (3 M ?)
(2 U ?) (STIM PUM)

4 TRUE IN PS
STM: (WRONG CON) (RESP JES) (USED (1 P?) (3 M)
(2 U ?) (STIM PUM)

5 TRUE IN PS
STM: (COND (1 P ?)) (WRONG CON) (RESP JES) (3 M ?)
" (2U7) (STIM PUM)

7 TRUE IN PS
NOW INSERTING

(M7 (1 P?) =~ (USED) (DEP (REPLY JES)) (SAY JES)
ONLINE E.5 :

STM: (3 M ?) (RESP JES) (WRONG CON) (2 U ?)
(STIM PUM)

Now memory contains a reply but no response, so rule 3 matches and
elicits the correct response (JES) from the user. Rule 4 fires, since the
reply differs from the response, marking the reply wrong. Next rule 5 fires,
changing the USED label to a COND label. Finally rule 7 is reached and
matches with the variables bound as: x1=3, x2=M, x3=JES, and x4=CON. When
the rule is fired it now creates a new rTule with two condition elements, one
from the COND already in memory and one from the COND inserted by rule 7
itself. Note that this rule was inserted just above the previous rule that
led to the error, thus insuring that in this ordered system it will be
examined first. The two rules just added are:

(3M?) (1P ?)=> (USED) (DEP (REPLY JES)) (SAY JES)
(1 P ?) => (USED (DEP (REPLY CON)) (SAY CON)
It should be clear that PAX will now elicit the response CON, and PUM the

response JES, as desired.

The stimulus-response pairs given to EPAM]1 for a test of paired-associate
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verbal learning are those of Figure 3. There were three training trials, and
on the third trial the system made no errors. The output piroduced by the program
is shown in Figure 5, and the trace of the test is shown in Appendix III.

The rules learned by the system are shown in Figure 6a in a shorthand notation.*
These rules are equivalent to the discrimination net shown in Figure 6b. Note
that the condition elements are analogous to intermediate nudes and the response
elements to the terminal nodes in the net.

EPAM2. The second implementation of EPA, called EPAM2, is shown ia

Figure 7. This more complete version of EPAM grows a procduction system sim-
ilar to the one produced by EPAM1, except that the productions are analogous to

a net in which response cues rather than complete responses are stored in some

of the terminal nodes. These cues (i.e., C_N) are retrieved by dropping the
stimulus th—~ugh the net, and are then themselves dropped through the net %o
retrieve t. : responses stored in other terminal nodes. The system exhibits
retroactive inhibition, stimulus generalization, and response generalization,
25 well as stimulus-response confusion (replying with a stimulus item instead
of a response item).

Appendix IV gives a trace of EPAM2 learning tue stimulus-response pairs
of Figure 3. The output produced during the three training trials is shown
in Figure 8. There were two instances of stimulus generalization, two of
response generalization, one of both stimulus- and response generalization,
and two of stimulus-response confusion.

The production rules learned by EPAM2 and the corresponding discrimination

net are shown in shorthand notation in Figures 9 and 10 respectively. Note

*Conditions, like (1 P), are elements denoting a letter and its location in
the syllable, and are ordered (first, third, second) according to syllable
location. Actions are response words like CON, or partial response cues like
(1 M).




STIMULUS REPLY 1 REPLY 2 REPLY 3 RESPONSE
PAX i CON CON CON
BEK ? MAB (SG) LUQ LUQ
CIT & DER DER DER
BUK LUQ (SG) MAB MAB MAB
y NAL ? LEQ LEQ LEQ
‘ REB % MOL MOL MOL
NOJ LEQ (SG) PED PED PED 1
Figure 5, EPAMI Output for three Training Trials

(5G indicates a stimulus generalization error)

ey




(1P)

(1 B)(3 K)(2 E)
(1 B)(3 K)

(1 B)

(10

(1 N)(3J)
(1N)

(1 R)

a. Production Rules Learned by EPAM1
(in shorthand notation)

PED LEQ MOL

b. Equivalent Discrimination Net

Figure 6. Production Rules Learned by EPAM1
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- (READY) (STIM X1) => (REM {READY)) (PERCEIVE X1 ?)
. (READY) => (ATTEND STIM)
. (REPLY) - (RESP) => (ATTEND RESP)
. (REPLY X1) - (RESP X1) => (REP REPLY WRONG)
. (REPLY X1) (RESP X1) => (STOP)
. (USED) (TEST X1) ~ (TEST X2) => (REP USED USEDx)
- (TEST X1) (TEST X2) (X3 X4 ?) => (REM (X3 X4 ?))
- (TEST X1) (TEST X2) - (R-GEN) => (DEP (REPLY X1) (R-GEN)) (SAY X1)
= (RESP) => (DEP (REPLY ?)) (SAY ?) (ATTEND RESP)
10. (RESP X1) - (X2 X3 RESP) => (PERCFIVE X1 RESP)
11. (WRONG) (TEST X1) (STIM X1) - (R-GEN) => (DEP (R-GEN))
r 12. (OLD X1) (R-GEN) => (REP OLD COND) (DEP (HOLD X1))
13. (USED X1) (USEDx) (R-GEN) => (REP USED COND) (DEP (HOLD X1))
14. (R-GEN) (COND (X1 X2 7)) (X1 X2 RESP) => (REM (X1 X2 RESP))
15. (X1 X2 RESP) (RESP X3) (WRONG X4) - (DONE) => (COND (X! X2 7)
(ACTION (OLD) (DEP (REPLY X3)) (SAY X3)) (PROD (SAY X4) (TEST X4)) (DEP (DONE))
16. (USEDx X1) => (REP USEDx COND)
17. (OLD) (DONE) - (TEST) => (REP OLD COND)
18. (R=GEN) (HOLD (X1 X2 7)) => (REM (HOLD (X1 X2 ?))) (ACTION (DEP (X1 X2 ?)))
19. (R-GEN) (X1 X2 RESP) (STIM X3) (WRONG X4) => (ACTION (DEP (TEST X3)))
(ACTION (USED) (DEP (X1 X2 ?))) (PROD (DEP (TEST X3))) (STOP)
20. (X1 X2 ?7) (X3 X4 RESP) (STIM X5) (WRONG X6) = (COND (X1 X2 ()]
(ACTION (USED) (DEP (X3 X4 7)) (DEP (TEST X5))) (PROD (SAY X6)) (STOP)

CONOVBWN —

Figure 7. EPAM2: A Production System
Implementation of EPAM




STIMULUS
PAX
BEK
CIT
BUK
NAL
REB

NOJ

CON (SR)

LUQ (SG)

I’

LUQ (SG RG)

Figure 8.

EPAM2

(SG:
RG:
SR:

REPLY 2
CON
MAB (SG)
DER
MAB
LUQ (RG)
MAB (RG)

PAX (SR)

REPLY 3
CUN

LuQ

RESPONSE
CON
LUQ
DER
MAB
LEQ
MOL

PED

Output for Three Training Trials
stimulus generalization error,
response generalization error,
stimulus-response confusion).
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(1 D) => DER
(10371 =>(1D)
(1 C) => CON
(1 P)(3 D) => PED
(1 P) =>(1C)
(1 L)(3Q => LEQ
(1 L) => LUQ
(1 B)(3 K)(2 E) => (11L)
(1 M)(3 L) => MOL
(1 M) => MAB
(1 B)(3K) => (1M
(1 P) => PED
(1 N)(3J) => (1P)(3 D)
(1 N)(3J)=>(1P)
(1 L) =>LUQ
(1 B) => (11L)
(1 L) => LEQ
(IN) =>(1L)(3Q
(1 N) => (1L)
(1 M) => MOL
(1 R) => (1 M)(3 L)
(1 R) => (1 M)

Figure 9. Production Rules Learned by EPAM2
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that the path through the net from the top node to a terminal node corresponds
directly to tle sequence of conditions tested in the production system to
obtain a response.

EPAM2, illustrated in Figure 7, is an extremely compact piece of code
which performs a sizable amount of information processing. Its power comes
from the strong pattern matching capatilities inherent in the production
system interpreter and from the primitive but highly useful memory modification
and system building actions employed. Its compactness is due, in part, to the
use of ordered production rules, since much information concerning rule appli-

cability is implicit in the location of the rules.*

V. PRODUCTION SYSTEMS FOR SERIES COMPLETION TASKS

The series completion task has long been considered a learning task, but
a very complex one having little in common with more fundamental learning
tasks such as learning to add or learning to associate pairs of syllables.
Computer models of series completion (Simon and Kotovsky, 1963; Klahr and
Wallace, 1970; Williams, 1972; Hunt and Poltrock, 1974) have been complex programs
with structures quite dissimilar from the structures of more basic learning
models, such as EPAM.** }are an attempt is made to provide a common structure
for these learning tasks The essence of their commonality is (1) an ordered

production system representation of what is learned, and (2), the technique

of adding new production rules above the error-causing rules to correct the errors.

Unordered production system implementations of EPAM (Rychener, 1975) tend
to require twice as mzny rules as EPAM2.

** The Hunt and Poltrock model is described as a collection of production systens.
However, these systems are non-adaptive and do not represent the newly learned
concept in production system form.

.—



Simple Series Completion

The first production systems to be described are designed to solve simple

repetition series completion problems, i.e., problems which can be solved

using only the same relation. Thus problems involving alphabets are excluded

since they generally require the use of a next or prior ro

lation on the alphabet.

The extension of this approach to problems requiring other relations will be

discussed later.

Basic Learning Technique. The learning technique used by the series

completion production system is quite simple. Production rules are created

such that the total set of rules represents a hypothesis about what symbols

come next given a current context of symbols. The hypothesis is tested by

ber 3

checking the given series to see if the hypothesis (i.e., the current rules)

correctly predicts cach symbol in the series given the partial series up

to that symbol. When every svmbol in the problem series is correctly

predicted, the system uses the hypothesis and the entire problem series to

predict the next symbol in the series.

An example will illustrate the details of this procedure. Note that

for this example the letters are considered unique, unordered symbols, that

is they have no referent in an underlying alphabet. Consider the letter

series ACABAC. First the series is partitioned as shown:
A/ CABAC. (4)

The current context A is matched against the current hypothesis to obtain

a prediction for the next letter. At this point there are no hypotheses,

except the default one which always says the next letter is the first letter

in the series (in this case A).

Since the prediction is incorrect* (C is

* The predictions made by the default hypothesis are always considered incorrect. '
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actually next,not A) a production rule is added above the existing rules.
The condition side is the first letter of the current context (the first
letter going right to left from the vertical line in 4). The action side is
the letter immediately following the current context. Now there are two rules
which constitute thc hypothesis:

A->C

xl + A,
which say in effect, "if the first letter in the current context is A then
predict C, otherwise predict A." Now the series is repartitioned as:

AC/ABAC ' (5)
and again the current context, this time A C, is matched against the
hypothesis. Since the default rule again makes the prediction it is considered
an error and a new rule is added as before to produce:

(A

A% IC

xl1 ~A
Now the series is repartitioned as:

ACA/BAC (6)
and the second rule incorrectly predicts that the next letter is C rather
than B. A new rule is added, with just enough of the current context to
distinguish it from the context in the rule that led to the error. Thus

the rules become*:

xl » A

*Notice that the new rule is added above all existing rules rather than above the
error-causing rule. For simple series completion tasks this simplification will
suffice.
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The series is repartitioned as:

ACAB/AC (7)
which leads to a prediction by default rule and thus the addition of the
rule B + A, The final partitioning leads to the correct predictionC, thus
no new rule is added. The rules are now:

B~ A

CA—+B

C~»A

A-+C

xl1 + A .

Since the end of the series has heen reached and errors were made the -
partition-prediction process starts over with the series again partitioned
as in 4-7. This time every prediction is correct so the learning phase

(the phase in which new rules are added) is terminated. Now the entire
series ACAEAC is used as the context to predict the next letter. In this
case the prediction is A. To extend the series the context plus predictions
are used as context, thus ACABACA leads to a prediction of B. The e¢xtended

series predicted by these rules is ACABACA BACAB ...

Letter Series. The production system for simple letter series completion
tasks is shown in Figure 11. The actions used are the same used in the pre-
vious systems except for OBSERVE (rather than PERCEIVE), and the addition

of SUCC, the successor function on digits. The special-purpose OBSERVE

acticn is defined below.

(OBSERVE a b): Breaks word a into individual letters and tags these
letters with b.




1. (READY) (SERIES X1) = (REP READY CONT)
(OBSERVE X1 ?)
. (READY) => (ATTEND SERIES)
(X1 ?) - (LOC) => (COND (1 X4 7))
(ACTION (DEP (NEXT X1))) (PROD Ei'D)
(DEP (LOC X1))
. (0 X1 7?) = (SUCC)
- (ERROR) (SERIES X1) (LOC X2) - (X3 7) =
(CLEAR (SERIES X1) (LOC X2)) (DEP (READY))
6. (NEXT X1) - (X2 ?) => (SAY X1)
(DEP (MATCH) (X1 ?)) (STOP)
7. (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1))
= (MATCH) = (DEP (MATCH))
8. (USED) - (MATCH) - (ERROR) => (DEP (ERROR))
9. (USED (X1 X2 7)) (NEXT) => (REP USED OLD)
» 10. (X1:X2 ?) (NEXT) - (DONE) =>
(REP (X1 X2 ?) (OLD (X1 X2 ?))) (DEP (DONE))
11.(OLD (X1 X2 ?)) => (REP OLD COND)
(DEP (X1 X2 7))
12. (NEXT X1) (MATCH) (SERIES X2) =)
(REP (NEXT X1) CONT) (REM (MATCH) (DONE))
(PROD (SERIES x2))
13. (LOC X1) (NEXT X2)
(ACTION (USED) (DEP (NEXT X3))) => (REP X1 X3)
(REP (NEXT X2) CONT 2) (REM (DONE))
(PROD (NEXT X1))
14. (X1 ?) (CONT) (X2 ?) = (REP X1 (0 X1))
(REM (CONT)) (ACTION (USED) (DEP (NEXT X2)))
15. (X1 ?) (CONT) = (REP X1 (0 X1)) (REM (CONT))

WN

N b

Figure 11. Production System for Simple Series
Completion Task.




OBSERVE was designed for the series completion production systems and
takes a letter series like ABABA and notices individual letters. Tor example,
(OBSERVE ABABA ?) puts (A ?) (B :) (A?) (B?) (A?) into memory so that
individual letters can be recognized. The OBSERVE and PERCEIVE actions are
used rather than a set of more primitive actions because the primary interest
here is not how words are perceived but rather how new information processing
rules can be added to an existing system,

The first three rules of Figure 11 are initialization rules: they cause
the series to be read in and the default rule to be created. Rule 13 fires
when an erroneous prediction is made, acding a new rule tco the system. Rule 12
fires when a correct prediction is made, removing all COND's and ACTION's from

memory without adding a necw rule*.

A trace of the system solving the series ABAB is shown in Appendix V.

The rules learned for this series were:

B~ A

A-+B

Appendix VI shows a trace of the system solving the more complex series

ABAACAABA. The rules learned are:

CAA-+B
CA-A
C~+A

AASC

*Here PROD does not add a rule because it cannot find any current rule that
contains the argument, i.e., (SERIES...).
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which predict the extension of the series to be:

ABAACAABA A C A ...
Notice that the rule A+ B is conditionally redundant*, that is, for this
particular series it cannot be accessed. Figure 12 shows a number of simple
letter series together with the rules learned by the letter series produc-
tion system. Each set of rules represents the concept of the series, and the

predictions made by them are similar to those obtained using the template model

of Klahr and Wallace (1970).

Complex Letter Series Completion
A production system will now be described which can solve complex letter
series completion tasks, i.c., letter series that may require the use of

Successor or predecessor operations on the alphabet.

Extended Learning Technique. The learning technique used here is similar

to the one just described for simple series completion, in that production rules
are created which represent hypotheses about which symbols come next given a
current context of symbols. The major difference is that rules are generalized
before they are added to the system. For example, in the simple series comple-
tion program with context C A and next letter B the specific rule C A+ B

is added. But here a generalized version of this rule is added which takes

into account the letter relationships which might be relevant. The problem

is that the rules can be generalized in a number of different ways, each way

being a hypothesis about which letter relationships are relevant for this

*See Waterman (1970) for a discussion of redundancy in ordered production
systems.




Series Rules Prediction

1. ABAABAAB BA-+A AAB

2. AAABAAABAA BAA-+A ABA

3. CAABACAAB BA=+C ACA

4. ABABCABAB BAB~+C CAB

Figure 12. Rules Learned by Simple Letter Series
Completion Production System (Redundant rules not shown).
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particular series. The variations on C A + B are shown below.

xl1 A - B
Cxl »B
x1 A »'xl
C xl-» x1!
xl x2 - B
xl '"'x1 + B
xl x2 + 'xl
xl '"'x1 -+ 'xl

The first rule above is interpreted 'any letter followed by A leads to
B, the second is "C followed by any letter leads to B", the third "any
letter followed by A leads to the predecessor of that letter", etc.

If every time a new rule was added, the system arbitrarily picked a
generalization, intending to backtrack to try the other generalizations when
an error was discovered, a huge tree of possibilities would be generated,
making the problem virtually unsolvable. The solution to this dilemma is to
use tree-pruning heuristics to limit the number of possible generalizations
at cach step. The production system to be described uses one very powerful

heuristic which will be called the template heuristic.

The template heuristic consists of hypothesizing the period size, and
recognizing only relations between letters which occupy the same irelative
position within the period, while generalizing on all letters. For example,
if given the series ACABA with assumed period 2, then the relations looked
for are shown by the arrows below.

ETTNY 1Y

]
k& ABEA

For context CA and next letter B only onc gemeralized rule, x1 x2 - vl

can be obtained. For the same series with assumed period 3 the relations looked

L s T
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for are:

ACA | BA

and only the rule xlI x2 + B can be obtained. For assumed period 1 the relations

are: ¢’“\{r\\[fj3(‘\' %

]
ACABEA

and only x1 ''x1 +'xl can be obtained. These rules are all examples of
inter-period rules, since in each case the context and next letter are not

all located within the same period.

e e e s r— s &

Predecessor and successor relations between letters are always represented
by letting the variable stand for the first letter and the variable plus |
appropriate apostrophes stand for the second letter, i.e., A and C would be
x1 and x1'', while C and A would be x1 and ''xl. The same relation can be
represented in either of two ways. The first, total generalization, involves
substituting the same variable for each letter. The second, partial generali-
zation, consists of using the letter itself rather than a variable. Thus if
given the context A B A C the relation between alternate letters could be
represented as x1 x2 xl1 x2' (total generalization) or as A x2 A x2' (partial
generalization). The system will generate correct concepts regardless of
whether it uses total or partial generalization on same. But concepts for
simple repetition series tend to be mcre concise when total generalization is

used, consequently, a combination of both is used in the actual implementation.*

*The first inter-period rule added during each new period size hypothesis uses
total generalization on same. The rest use partial generalization.
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Complex series completion learning proceeds as follows: period size
is hypothesized and the series goes through a partition-prediction cycle
as in the simple series completion technique. The differences are that
generalized rules are added, and the partition-prediction process is not

repeated until every prediction is correct; it is performea just once for

each period hypothesis. A period hypothesis is considered false if:

(1) no relation can be established between letters which

occupy the same relative position within the period,

(2) the number of inter-period* rules added exceeds the

current period size hypothesis.

When the current period size hypothesis is found to be false, a period
size one greater than the previous is hypothesized, and the entire partition-
prediction process starts over from the beginning. An example will clarify
this procedure. Consider the series ABHBCICD. The initial period size

hypothesis is 1 and the initial pertitioning is shown below.

] ] ] ] ] ] 1
A /iB/H\B,C{IiC\D
T T e e )

The system already contains the default rule x1 - xl, which is always

considered to generate an error. Thus the context A is ‘iopped through the
rules and the erroneous prediction A is made. Now the system takes the
context A and next letter B to form A - B, generalizes it to get x1 - xl1°',
and places it above the error-causing (default) rule to produce:

xl -+ x1! (1)

*Intra-period rules are not counted (since they are not needed to extend
the series) and are always considered to lead to an error.
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The next partitioning is

A::B /H'BCEI'C:
which produces the context AB and next letter H. The context matches rule
(1) but the prediction is C. Thus the system adds a new rule, a generalized
version of A B -+ H. But this makes the number of rules added (2) exceed
the period hypothesis (1) so a new hypothesis of 2 is generated. Partitioning
starts over as:

A/ B;H BEC IEC B+,
and the rules again become just the default rule x1 -+ xl1. The context A
leads to a prediction of A (from the default rule) and an intra-period
rule. the generalization of A + B, is added. The rules are now:

x1 + B (initialization).
The intra-period rules are called initialization rules because they are not
needed to extend the series, only to generate it from scratch. The next
partitioning is

AB/IH BéC 1co

' '

and the context B matches the first rule, leading to the erroneous prediction
B. Now the rule AB + H is generalized, but since no relation between A
and H can be found* the period 2 hypothesis fails. Partitioning starts over
as:

A/BHBCIICD

' '

and the rules again become just the default rule. Context A generate-s

8 prediction of A which leads to the intra-period rule A + B being

*The system does not search for relations highe than triple predecessor
OTr successor.




L

40.

generalized and added to produce:

x1 + B (initialization).
The next partitioning is

AB/HEBCI'ECD
and context B matches the top rule, leading to the erroneous prediction B,
Now the intra-period rule A B + H is generalized ard added to give:

xl x2 + H (initialization)

x1 = B (initialization).

The next partitioning is

ABH/IBCIICD

' '

and context BH matches the top rule leading to the prediction H. Now the
inter-period rule A BH + B is generalized and added above the error-
causing rule to give:

x| %2 x% =+ x1' (1)

xl x2 + H (initialization)
xl - B (initialization).

The next partitioning

ABHIB/CIICD

| '

produces the context A B H B, and the B H B matches the x1 x2 x3 of rule
(1) to produce the correct prediction C. Since the prediction was correct
no rules are added and the partitioning continues 3 more times, each producing
the correct prediction. The partition-prediction cycle is now complete, and
the entire series is taken as context to produce the next letter prediction.
Rule (1) fires and predicts J. The concept of the series is now embodied

in the numbered rules (the inter-period rules). Thus we say that

xl x2 x3 + x1' is the concept learned by the system, and the series predicted

by this concept is ABHBCICDJDEK ... .
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Production System. The production system for complex letter series

completion is shown in Figure 153. The template heuristic is embodied in

the special action (PRODS abcd). The argument b is the hypothesized period
(initially 1), and € is the ;eries itself. As in PROD, memory elements
marked (COND ...) and (ACTION ...) are combined and removed from memory to
Crcate a new rule. This rule is generalized according to the template
heuristic and placed immediately above the first existing rule that contains
the argument a. The argument d is the number of rules already added to the
Production system by PRODS. The action PRODS is clearly nor primitive and
could have been written as a separate production system which used the action
PROD. It was written as an action rather than a production system so as

not to obscure the production modification techniques being illustrated.

Rules 1 and 2 in Figure 13 provide initialization, rule 16 is the
default rule, and rule 13 adds productions to the system. Appendix VII
shows the trace of this production system on the series CDCDCD and ABMCDMEF .
The concept learned for CDCDCD (in shorthand notation) is:

xl x2 =+ xl
Note that this is the concept of any simple repetition series of period 2,
not simply the concept of the series CDCDCL. In general, any simple
repetition series of length n, will be learned as x1 x2 x3 ... xn -+ xl.

Figure 14 shows concepts learned using the 15 series from Simon § Kotovsky
(1963). The correct predictions are made in all cases, but in series 8 the
system generated the concept of a series with period 6 rather than the simpler
concept of a series with period 3. In general, this learning technique will
successfully solve letter series completion problems that can be solved by
Klahr's template model (Klahr § Wallace, 1970), if given enough of the series.

However, this particular algorithm does not guarantece finding the concept of

the shortest period, and may instead, as in series 8, find multiples of the

shortest period. For more on serial pattern acquisition see Waterman (1975).




Figure 13.

. (READY) (SERIES X1) => (REP READY CONT)
(DEP (PNUM 2) (COUNTS 0)) (OBSERVES X1 1)

2. (READY) => (ATTEND SERIES) (DEP (PERIOD 1))

3. (COUNT) (COUNTS X1) = REM (COUNT))

(REP X1 X1°)

-0 X1?) = (succ)

. (FAIL) (PERIOD X1) (SERIES X2) => (ERASE)
(CLEAR) (DEP (READY) (PERIOD X1') (SERIES X2))
6. (PERIOD X1) (COUNTS X1') (SERIES X2) =>

(ERASE) (CLEAP)
(DEP (READY) (HERIOD X1') (SERIES X2))
7. (NEXT X1) - (X2 ?) - (ACTION) = (SAY X1)
(DEP (MATCH) (X. 7)) (STOP)
8. (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1)))
= (MATCH) - (ERROP) => (DEP (MATCH))
9. (X1 X2 ?) (NEXT) = (LONE) =
(DEP (OLD (X1 X2 ?))) (LSP {DONE))
10. (USED (X1 X2 7)) => (REP USED OLD)
(DEP (X1 X2 7))
11. (OLD (X1 X2 ?)) => (REP OLD COND)
12. (MATCH) (NEXT X1) (SERIES X2) (LOC X3) =
(REP (NEXT X1) CONT 2)
(REM (MATCH) (DONE) (LOC X3)) (PROD (SERIES X2))
13. (LOC X1) (NEXT X2) (PERIOD X3) (SERIES X4)
(COUNTS X5) => (REM (LOC X1) (DONE) (ERROR))
(REP (NEXT X2) CONT) (PRODS (LOC X1) X3 X4 X5)
14. (CONT) (X1 ?) (PNUM X2) (X3 ?) =
(REP X1 (0 X1) 2) (REP X2 X2' 3) (REM (CONT))
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2)))
15. (CONT) (Xi ?) = (REP X1 (0 X1) 2)
(REM (CONT))
16. (1 X1 ?) = (DEP (NEXT X1) (LOC 1))

(L B 3

Production System for Complex Series
Completion Task.
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Series Rules Prediction
Cbcbeb x1 x2 cbC
AAABBB xl x2 x3 ccc
ATBATAATB xl x2 x3 x4 x5 x6 ATA

ABMCDMEF xl M x3 x1"! MGH
xl x2 x3

DEFGEFGH xl x2 x3 x4 - ) FGH
QXAPXBQXA Xl x2 x3 x4 x5 x6 PXB

ADUACUAEUABUAF x] UA x4 x5 x6 'x1 U A UAA
UA x3 x4 x5 x6 U A
A x2 x3 x4 x5 x6 A
xl U x3 x4 x5 x6 'xi
xl x2 x3 x4 x5 x6

MABMBCMCDM M x2 x3 x4 x5 x6 M
xl x2 M x4 x5 x6 x1'' x2'°

x]l x2 x3 x4 x5 x6 x1''

xl x2 x3 x4 x5 x6

URTUSTU Ux2x3U
xl x2 x3

ABYABXAB B x2 x3 B

RSCDSTDE

NPAOQAPR

WXAXYBY
JKQRKLRS

PONONMNM

Figure 14. Rules Learned by Complex Series
Completion Production Systen
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VI. CONCLUSION

The PAS-II production system has been described and used to illustrate
adaptive techniques in production system construction. The focus has been
on the machinery needed to implement self-modification in a production system
framework. It has been demonstrated that a production building action
(PROD) is the crucial one needed for such ar implementation, and that its use
in an ordered production system leads to relatively short, straight-forward
programs.

Moreover, it has been dcmonstrated that within a production system
representation, using the actions illustrated, one can create a learning
paradigm which applies to (1) very simple rote learning tasks such as learning
the addition table, (2) more involved learning tasks like nonsense syllable
association and discrimination, and (3) complex induction tasks such as
inducing the concept of a serial pattern. In all three cases the paradignm
consisted of creating an ordered production system representation of the
concept learned by adding new production rules (or hypotheses) above the
error-causing rules.

The adaptive production systems described in this paper are by nature
quite parsimonious; that is, the system which learns the concept is repre-
sented in exactly the same fashion as the concept being learned. They are
both represented as production rules in a single production system. This
eliminates the need for having two different types of control in the system;
one for activating the learning mechanism and another for accessing the con-
cept learned. Another way of stating this is that the concepts learned
are not passive, static structures which must be given a special interpre-

tation, but riather are self-contained programs which are executed auto-

matically in the course of executing the learning mechanism.
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[t should be stressed that much of the system simplicity seen in the
production system examples is duc to using ordered production rules with
powerful pattern matching capabilities. With ordered rules the system can
use the simple heuristic "add a new rule immediately above the one that made
the error' to great advantage, as iliustrated by the EPAM and series
completion examples.

Finally, the analogy between an ordered production system and a dis-
crimination net has been made clear, i.c., that the condition elements
are non-terminal nodes in the net, the action clements arc terminal nodes,

and the searches through the conditions in the production system are

analogous to the paths from the top clement to the terminal elements in the net.
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APPENDIX I. Trace of ADD Production System.

smemory display ps displsy
MEMOTY MODE
1.S'M « (READY) (ORDERO | ¢ 345678 9)

PS MODE
1. (READY) (ORDER X1) > (REP (READY) (COUNT X1))
(ATTEND)
2. (N X1) - (NN) - (SNN) => (DEP (NN X1))
3 (COUNT X1) (M XI) (NN X2) (N X3) o>
(SAY X2 IS THE ANSWER) (COND (M X1) (N X3))
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER))
(PROD) (STOP)
. (COUNT) (NN) o> (REP (COUNT) (S COUNT))
(REP (NN) (S NN) 2)
. (ORDER X1 X2) > (REP (X1 X2) (X2))
(COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD)

ofire
1 TRUE IN PS
OUTPUT FOR (ATTEND) = (dep (m 4)n 2))
STM: (N 2) (M 4) (COUNT 0)
(ORDER O 1 23456789)

2 TRUE IN PS
STM (NN 2) (N 2) (M 4) (COUNT 0)
(ORDER 0 1234567809)

4 TRUE IN PS
STM. (S COUNT 0) (S NN 2) (N 2) (M Q)
{ORDER0123456789)

5 TRUE IN PS
NOW INSERTING
(S X30) «> (REP (S X3 0) (X3 1)
ON LINE 0S5
STM: (ORDER 1 23456 7 8 9) (S COUNT 0) (S NN 2)
(N 2) (M Q)

¢5 TRUE IN PS
STM: (COUNT 1) (ORDER 1234567 89) (S NN 2)
(N2)(Maq)

5 TRUE IN PS
NOW INSERTING
(S X3 1) «> (REP (S X3 1) (X32)
ON LINE 025
STM (ORDER 2 3456 7 3 9) (COUNT 1) (S NN 2)
(N2)Ma4)

5 TRUE IN PS
NOW INSERTING
(SX32) «> (REP (S X3 2) (X3 3)
ON LINE 013
STM (ORDER 3456 7 8 9) (COUNT 1) (SNN 2) (N 2)
M a)

0.13 TRUE IN PS
STM: (NN 3) (ORDER 3 4 5 6 7 8 9) (COUNT 1) (N 2)
(M 3)

4 TRUE IN PS
STM. (S COUNT 1) (SNN 3) (ORDER 3456 7 8 9)
(N2)(Ma)

I-1.

0.25 TRUE IN PS
STM: (COUNT 2) (S NN 3) (ORDER 3456 7 8 9) (N 2)
(M 4q)

5 TRUE IN PS
NOW INSERTING
(S X3 3) o> (REP (S X3 3) (X3 4))
ON LINE 005
STM. (ORDER 4 5 6 7 8 9) (COUNT 2) (S NN 3 (N 2)
(M 4)

0.05 TRUE IN PS
STM (NN 4) (ORDER 45 6 7 8 9) (COUNT 2) (N 2)
(M Q)

4 TRUE IN PS
STM (S COUNT 2) (SNN &) (ORDER 4567 8 9) (N 2)
(M 4)

0.13 TRUE IN PS
STM (COUNT 3) (S NN 4) (ORDER 45 6 7 8 9) (N 2)
(M Q)

5 TRUE IN PS
NOW INSERTING
(S X3 4) «> (REP (S X3 4) (X3 5))
ON LINE 003

STM (ORDER 5 6 7 8 9) (COUNT 3) (S NN &) (N 2;
(M 4)

003 TRUE IN PS
STM (NN S) (ORDER 5 6 7 8 9) (COUNT 3) (N 2) (M 4)

4 TRUE IN PS
STM (S COUNT 3) (S NN 5) (ORDER 5 6 7 8 9) (N 2)
(M Q)

005 TRUE IN PS
STM (COUNT 7 (S NN 5) (ORDER 5 6 7 8 9) (N 2)
(M 4)

5 TRUE IN PS
NOW INSERTING
(S 3 5) «> (REP (S X3 5) (X3 6))
ON LINE 002
STM (ORDER 6 7 8 9) (CUL"T A (€ !N 5) (N 2) (M 8)

0.02 TRUE IN PS
STM: (NN 6) (ORDER 6 7 8 9) (COUNT 4) (N 2) (M 4)

3 TRUE IN PS
6 IS THE ANSWER

NOW INSERTING
(M 4) (N2) «> (SAY 6 IS THE ANSWER) (STOP)
ON LINE 001
STM (COUNT 4) (M 4) (NN 6) (N 2) (ORDER 6 7 8 9)

«display
001. (M 4) (N2) «> (SAY 6 IS THE ANSWER) (STOP)
0.02. (S X3 5) => (REP (S ¥3 5) (X3 6))
003 (S X3 4) => (REP (S X3 4) (x35))
0.05. (S X3 3) «> (REP (S X3 3) (X3 4))
0.13 (S X32) «> (REP (S X3 2) (X3 3)




025 (SX31) «> (REP (S X3 1) (X3 2)
05 (SX30) «> (REP (S X30) (X3 1))
1. (READY) (ORDER X1) «> (REP (READY) (COUNT X1))
(ATTEND)
2. (N X1) - (NN) - (S NN) > (DEP (NN X1))
3 (COUNT X1) (M X1) (NN X2) (N X3) «>
(SAY X2 IS THE ANSWER) (COND (M X1) (N X3))
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER))
(PROD) (STOP)
4. (COUNT) (NN) > (REP (COUNT) (S COUNT))
(REP (NN) (S NN) 2)
5 (ORDER X1 X2) > (REP (X1 X2) (X2))
(COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD)

einmtialize fire
INITIALIZED
1 TRUE IN PS
OUTPUT FOR (ATTEND) - (dep (m 8)(n 2))
STM: (N 2) (M 4) (COUNT 0)
(ORDER0123456789)

0.01 TRUE IN PS
6 IS THE ANSWER

STM (M 8) (N 2) (COUNT 0)
(ORDER0123456789)

einitialize fire
INITIALIZED
1 TRUE IN PS
OUTPUT FOR (ATTEND) » (dep (m 2)(n 1))
STM. (N 1) (M 2) (COUNT 0)
(ORDERO12345678¢%)

2 TRUE IN PS
STM (NN 1) (N 1) (M 2) (COUNT 0)
(ORDER0 1234567 89)

4 TRUE IN PS
STM (5 COUNT 0) (S NN 1) (N 1) (M 2)
(ORDERO 12345678 9)

0.25 TRUE IN PS
STM (NN 2) (S COUNT 0) (N 1) (M 2)
(ORDER0123456789)

05 TRUE iN PS
STM (CGUNT 1) (NN 2) (N 1) (M 2)
(ORDER0123456789)

4 TRUE IN PS
STM: (S COUNT 1) (SNN 2) (N 1) (M 2)
(ORDER01234567809)

O 13 TRUE IN PS
STM: (NN 3) (S COUNT 1) (N 1) (M 2)
(ORDER0123456789)

0.25 TRUE IN PS
STM (COUNT 2) (NN 3) (N 1) (M 2)
(ORDERO0 1234567 89)

3 TRUE IN PS

3 1S THE ANSWER

NOW [INSERTING
(M 2) (N 1) «> (SAY 3 IS THE ANSWER) (STOP)
ON LINE 0005
STM. (COUNT 2) (M 2) (NN 3) (N 1)
(ORDERO 1 2345678 9)

«display
0005 (M 2) (N 1) «> (SAY 3 IS THE ANSWER) (STOP)
001 (M 4) (N 2) > (SAY 6 IS THE ANSWER) (STOP)
002 (S X35) => (REP (S X3 5) (X3 6))
003 (S X3 4) »> (REP (S X3 4) (X3 5))
005 (S X3 3) -> (REP(SX33) (X3 4))
0.13 (S X32) «> (REP (S X3 2) (X3 3)
025 (SX3 1) «> (REP(SX31)(X3 2))
05 (5 X30) «> (REP (S X30) (X3 1))
1 (READY) (ORDER X1) => (REP (READY) (COUNT X1Y)
(ATTEND)
2. (N X1)- (NN) - (SNN) «> (DEP (NN X 1))
3. (COUNT X1) (M X1) (NN X2) (N X3) >
(SAY X2 IS THE ANSWER) (COND (M X1) (N X3))
(ACTION (STOP)) (ACTION (SAY X2 IS THE ANSWER))
(PROD) (STOP)
4 (COUNT) (NN) «> (REP (COUMT) (S COUNT))
(REP (NN) (S NN) 2)
5 (ORDER X1 X2) «> (REP (X} X2) (X2))
(COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD)

v




APPENDIX II. Trace of DIVIDE Production System.

smemory display ps display
MEMORY MODE
1. STM « (READY) (ORDER0 1 2345678 9)

PS MODE

1. (READY) > (REP (READY) (COUNT 0))
(DEP (ANS 0)) (ATTEND)

2. (M X1) - (REMAIN) > (DEP (REMAIN X1))

3. (ANS) (COUNT X1) (REMAIN X3) (N X1) (M X2)
*> (REP (ANS) (S ANS)) (REP (X1) (0) 2)
(REP (X3) (X2) 3)

4. (M 0) (ANS X1) (REMAIN X2) - (S) >
(SAY X1 WITH REMAINDER X2) (STOP)

5. (M) (COUNT) - (S) «> (REP (M) (P M))
(REP (COUNT) (S COUNT) 2)

6. (ORDER X1 X2) - (GO) => (REP (X1 X2) (X2))
(COND (P X3 X2))
(ACTION (REP (P X3 X2) (X3 X1))) (PROD (GO))
(COND (S X3 X1))
(ACTION (REP (S X3 X1) (X3 X2))) (PROD (READY))

ofire
1 TRUE IN PS
OUTPUT FOR (ATTEND) « (dep (m 3)(n 2))
STM. (N 2) (M 3) (ANS 0) (COUNT 0)
(ORDERO0 1234567809

2 TRUE IN PS
STM (REMAIN 3) (M 3) (N 2) (ANS 0) (COUNT 0)
(ORDERO1234567809)

5 TRUE IN PS
STM: (P M 3) (S COUNT 0) (REMAIN 3) (N 2) (ANS 0)
(ORDERO123456789)

6 TRUE IN PS
NOW INSERTING
(P X3 1) «> (REP (P X3 1) (X30))
ON LINE 55
NOW INSERTING
(SX30) «> (REP (SX30) (X3 1))
ON LINE 05
STM: (ORDER 1 234567 8 9) (PM 3) (S COUNT 0)
(REMAIN 3) (N 2) (ANS 0)

0.5 TRUE IN PS
STM (COUNT 1) (ORDER123456789)(PM 3)
(REMAIN 3) (N 2) (ANS 0)

6 TRUE IN PS
NOW INSERTING
(P X32) «> (REP (P X32)(X31))
ONLINE 58
NOW INSERTING
(SX3 1) «> (REP (S X31)(X32)
ON LINE 08
STM: (ORDER 234567 89) (COUNT 1) (PM 3)
(REMAIN 3) (N 2) (ANS 0)

6 TRUE IN PS
NOW INSERTING
(P X3 3) «> (REP (P X3 3) (X3 2))
ONLINE 59
NOW INSERTING
(S X3 2) => (REP (S X3 2) (X3 3))

II-1.

ONLINE 09
STM (ORDER 3456 7 8 9) (COUNT 1) (PM 3)
(REMAIN 3) (N 2) (ANS 0)

5.9 TRUE IN PS
STM (M 2) (ORDER 34 56 7 8 9) (COUNT 1)
(REMAIN 3) (N 2) (ANS 0)

5 TRUE IN PS
STM (P M 2) (S COUNT 1) (ORDER 345678 9)
(REMAIN 3) (N 2) (ANS 0)

0.8 TRUE IN PS
STM (COUNT 2) (P M 2) (ORCER 345678 9)
(REMAIN 3) (N 2) (ANS 0)

5.8 TRUE IN PS
STM (M 1) (COUNT 2) (ORDER 345678 9)
(REMAIN 3) (N 2) (ANS 0)

3 TRUE IN PS
STM (S ANS 0) (COUNT 0) (REMAIN 1) (N 2) (M 1)
(ORDER 34567 809)

0.5 TRUE IN PS
STM (ANS 1) (COUNT 0) (REMAIN 1) (N 2) (M 1)
(ORDER 345678 o

S TRUE IN PS
STM: (P M 1) (S COUNT 0) (ANS 1) (REMAIN I) (N 2)
(ORDER 3456789

05 TRUE IN PS
STM (COUNT 1) (P M 1) (ANS 1) (REMAIN 1) (N 2
(ORDER34567809) '

55 TRUE IN PS
STM (M 0) (COUNT 1) (ANS 1) (REMAIN 1) (N 2)
(ORDER3456789)

4 TRUE IN PS
1 WITH REMAINDER 1

STM. (M 0) (ANS 1) (REMAIN 1) (COUNT 1) (N 2)
(ORDER 345678 9)

«display
05 (S X30) «> (REP (S X30)(X31))
08 (SX3 1) »> (REP (S X3 1) (X320
09 (SX32) «> (REP (S X3 2) (X3 3))
1. (READY) => (REP (READY) (COUNT 0))
(DEP (ANS 0/) (ATTEND)
2. (M X1) - (REMAIN) => (DEP (REMAIN X1))
3 (ANS) (COUNT X1) (REMAIN X3) (N X1) (M X2)
=> (REP (ANS) (S ANS)) (REP (X1) (0) 2)
(REP (X3) (X2) 3)
4. (M 0) (ANS X1) (REMAIN X2) - (S) =>
(SAY X1 WITH REMAINDER X2) (STOP)
5. (M) (COUNT) - (S) > (REP (M) (P M))
(REP (COUNT) (S COUNT) 2)
55 (P X3 1) «> (REP (P X3 1) (X3 0))
58 (P X32) »> (REP (P X3 2) (X3 1))
5.9 (P X3 3) «> (REP (P X3 3) (X3 2))
6. (ORDER X1 X2) - (GO) «> (REP (X1 X2) (X2))




(COND (P X3 X2))

(ACTION (REP (P X3 X2) (X3 X1))) (PROD (GO))
(COND (S X3 X1))

(ACTION (REP (S X3 X1) (X3 X2))) (PROD (READY))

sinitialize fire
INITIALIZED
| TRUE IN PS
OUTPUT FOR (ATTEND) « (dep (m 2)(n 1))
STM (N 1) (M 2) (ANS 0) (COUNT 0)
(ORDER0123456789)

2 TRUE IN PS
STM (REMAIN 2) (M 2) (N 1) (ANS 0) (COUNT 0)
(ORDERO 123456789

5 TRUE IN PS
STM (P M 2) (S COUNT 0) (REMAIN 2) (N 1) (ANS 0)
(ORDER0O123456789)

05 TRUE IN PS
STM (COUNT 1) (P M 2) (REMAIN 2) (N 1) (ANS 0)
(ORDER01234567809)

5.8 TRUE IN PS
STM (M 1) (COUNT 1) (REMAIN 2) (N 1) (ANS 0)
(ORDERO 1234567809)

4 3 TRUE IN PS
STM (S ANS 0) (COUNT 0) (REMAIN 1) (N 1) (M 1)
(ORDERO01234567809)

05 TRUE IN PS
STM (ANS 1) (COUNT 0) (REMAIN 1) (N 1) (M 1)
(ORDER0 1234567809

S TRUE IN PS
! STM. (P M 1) (S COUNT 0) (ANS 1) (REMAIN 1) (N {)
(ORDER0 1234567809

05 TRUE IN PS
STM (COUNT 1) (P M 1) (ANS 1) (REMAIN 1) (N 1)
! (ORDERO 12345¢€789)

5.5 TRUE IN PS
STM (M C) (COUNT 1) (ANS 1) (REMAIN 1) (N 1)
(ORDER0 123456789)

3 TRUE IN PS
STM. (S ANS 1) (COUNT 0) (REMAIN 0) (N 1) (M 0)
(ORDER01234567809)

08 TRUE IN PS
STM: (ANS 2) (COUNT 0) (REMAIN 0) (N 1) (M 0)

{ (ORDERO 1234567849
4 TRUE IN PS
i 2 WITH REMAINDER 0

STM: (M 0) (ANS 2) (REMAIN 0) (COUNT 0) (N 1)
(ORDERO 1234567809)

«display
05.(S X30) > (REP (S X30) (X3 1))

I1-2,

08 (SX3 1) «> (REP (S X3 1) (X32))
09 (SX32) «> (REP (S X32)(X33))

1. (READY) «> (REP (READY) (COUNT 0))
(DEP (ANS 0)) (ATTEND)

2 (M X1) - (REMAIN) «> (DEP (REMAIN X1))

3 (ANS) (COUNT X 1) (REMAIN X3) (N X1) (M X2)
«> (REP (ANS) (S ANS)) (REP (X1) (0) 2)
(REP (X3) (X2) 3)

4 (M 0) (ANS X1) (REMAIN X2) - (S) «>
(SAY X1 WITH REMAINDER X2) (STOP)

5 (M) (COUNT) - (S) «> (REP (M) (P M))

(REP (COUNT) (S COUNT) 2)
55 (P X3 1) => (REP (P X3 1) (X30))
58 (PX32) «> (REP (P X32)(X31))
59 (P X33) «> (REP (P X3 3)(X32)

6 (ORDER X1 X2) - (GO) «> (REP (X1 X2) (X2))
(COND (P X3 %2))

(ACTION (REP (P X3 X2) (X3 X1))) (PROD (GO))
(COND (S X3 X1)) .
(ACTION (REP (S X3 X1) (X3 X2))) (PROD (READY))




APPENDIX III. Trace of EPAMI Production System. -1,

smemory display pe diepley
MEMORY MODE
I STM « (READY)

PS MODE

I (READY) (STIM X1} «> (REM (READY))
(PERCEIVE X1 2

2. (READY) o> (ATTEND STIM)

3 (REPLY) - (RESP) «> (ATTEND RESP)

4 (REPLY X1) - (RESP X1) «> (REP REPLY WRONG)

5. (USED X1) (WRONG X2) «> (REP USED COND)

6. - (RESP) «> (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

7. (X1 X2 7) (RESP X3) (WRONG X4) >
(COND (X1 X2 7))
(ACTION (USED) (DEP (REPLY X3)) (SAY X3))
(PROD (SAY X4)) (STOP)

ofire
2 TRUE IN PS

QUTPUT FOR (ATTEND STIM) « (dep (stim pax))
STM. (STIM PAX) (READY)

I TRUE IN PS
STM. (1 P2)(3X7)(2A7) (STIM PAX)

6 TRUE IN PS

?

OUTPUT FOR (ATTEND RESP)  (dep (re8p con))
STM: (RESP CON) (REPLY %) (1 P 7) (3X 7) (2 A 7)
(STIM PAX)

4 TRUE IN PS
STM (WRONG ?) (RESP CON) (1 P 7) (3 X N@RA?)
(STIM PAX)

7 TRUE IN PS
NOW INSERTING
(1 P?) o> (USED) (DEP (REPLY CON)) (SAY CON)
ONLINE S5
STM. (1 P 7) (RESP CON) (WRONG 7) (3 X (@AY
(STIM PAX)

«display 5-6
5 (USED X1) (WRONG X2) «> (REP USED COND)
55 (1 P?7) > (USED) (DEP (REPLY CON)) (SAY CON)
6. - (RESP) «> (DEP (REPLY 7)) (SAY ”
(ATTEND RESP)

«initialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (atim bek))
STM: (STIM BEN; (READY)

1 TRUE IN PS
STM: (1 B?7) (3K ?) (2 E 7) (STIM BEK)

6 TRUE IN PS

?

OUTPUT FOR (ATTEND RESP) « (dep (resp luq))

STM. (RESP LUQ) (REPLY ?) (1 B ) (3K ) (2E 7)
(STIM BEK)

4 TRUE IN PS
STM (WRONG ?) (RESP LUQ) (1 B ?) (3K ?) (2 € ”
(STIM BEK)

7 TRUE IN PS
NOW INSERTING
(1 B7) «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
ONLINE 58
STM (1 B ?) (RESP LUQ) (WRONG 7) (3K 7) (2 € 7)
(STIM BEK)

«display 5-6
5. (USED X1) (WRONG X2) «> (REP USED COND)
55. (1 P?7) «> (USED) (DEP (REPLY CON)) (SAY CON)
58 (1 B7) «> (USED) (DEP (REPLY LUQ)) (SAY LuQ)
6 - (RESP) «> (DEP (REPLY ?)) (SAY ?)
(ATTEND RESP)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) - (dep (atim cit))
STM (STIM CIT) (READY)

I TRUE IN PS
STM: (1 C?) (3T ?7) (217 (STIMCIT)

6 TRUE IN PS

?

OUTPUT FOR (ATTEND RESP) « (dep (reap der))
STM (RESP DER) (REPLY 2) (1 C7) (3T 7) (2 ] ?)
(STIM CIT)

4 TRUE IN PS
STM: (WRONG ?) (RESP DER) (1 C 2) (3T 7) (2 ] ?)
(STIM CIT)

7 TRUE IN PS
NOW INSERTING
(1 C7) o> (USED) (DEP (REPLY DERY)) (SAY DER)
ONLINE 59
STM (I C ?) (RESP DER) (WRONG 7) (3T 7) (2 1 ?)
(STIM CIT)

sdisplay 5-6
5 (USED X1) (WRONG X2) > (REP USED COND)
55 (1 P?) > (USED) (DEP (REPLY CON)) (SAY CON)
5.8. (1 B?7) > (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C?) > (USED) (DEP (REPLY DER)) (SAY DER)
6. - (RESP) > (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

sinitialize fire

INITIALIZED
2 TRUE IN PS

QUTPUT FOR (ATTEND STIM) (dep (atim buk))
STM: (STIM BUK) (READY)

1 TRUE IN PS
STM (1 B 7) (3K ?) (2 U ?) (STIM BUK)




58 TRUE IM PS
LuqQ

STM. (REPLY LUQ) (USED (1 B 7)) (3K 7} (2 U ?)
(STIM BUK)

3 TRUE IN PS
OUTPUT FOR (ATYEND RESP) (dep (resp mab))
STM (RESP MAB) (REPLY LUQ) (USED (1 B M (3K ?)
(2 U ?) (STIM BUK)

4 TRUE IN PS
STM (WRONG LUQ) (RESP MAB) (USED (1 B 7)) (3 K %
(2 U ?) (STIM BUK)

5 TRUE IN PS
STM- (COND (1 B ?)) (WRONG LUQ) (RESP MAB) (3 K ?”)
(2 U ?) (STIM BUK)

7 TRUE IN PS
NOW INSERTING
(3K ?) (1 B?) o> (USED) (DEP (REPLY MAB)) (SAY MAB)
ON LINE 57
STM: (3 K ?) (RESP MAB) (WRONG LUQ) (2 U ?)
(STIM BUK)

odisplay 5-6
5. (USED X1) (WRONG X2) «> (REP USED COND)
55 (1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
57.(3K?) (1 B? > (USED) (DEP (REPLY MAB))
(SAY MAB)
58 (1 B7?7) «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C7?) «> (USED) (DEP (REPLY DER)) (SAY DER)
6. - (RESP) «> (DEP (REPLY ?)) (SAY ?)
(ATTEND RESP)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (stim nal))
STM. (STIM NAL) (READY)

I TRUE IN PS
STM: (1 N 2) (3L ?) (2 A7) (STIM NAL)

6 TRUE IN PS

?

QUTPUT FOR (ATTEND RESP) « (dep (resp loq))
STM (RESP LEQ) (REPLY 2) (1 N?) (3L ?) (2 A ?)
(STIM MAL)

4 TRUE IN PS
STM (WRONG ?) (RESP LEQ) (1 N 7) (3 L ?) (2A?)
(STIM NAL)

7 TRUE IN PS
NOW INSERTING
(1 N?) o> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
ON LINE 5.9%
STM: (1 N ?) (RESP LEQ) (WRONG ?) (3L ?) (2 A ?)
(STIM NAL)

odisplay 5-6
5. (USED X1) (WRONG X2) => (REP USED COND)
55 (1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
57 (3K?7) (1 B?”) => (USED) (DEP (REPLY MAB))
(SAY MAB) :
58 (1 B?) > (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C?) «> (USED) (DEP (REFLY DER)) (3AY DER)
595 (1 N?) «> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
6. - (RESP) «> (DEP (REPLY ?)) (SAY ?)
(ATTEND RESP)

ainitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (stim rab))
STM (STIM REB) (READY)

1 TRUE IN PS
STM (1 R ?) (3B ?) (2 E?) (STIM REB)

6 TRUE IN PS

?

OUTPUT FOR (ATTEND RESP) » (dep (resp mol))
STM (RESP MOL) (REPLY ?) (1 R ) (3B ?) (2 E ?)
(STIM RLB)

4 TRUE IN PS
STM (WRONG ?) (RESP MOL) (1 R?) (3B ?) (2 E ]
(STIM REB)

7 TRUE IN PS
NOW INSERTING
(1R?) => (USED) (DEP (REPLY MOL)) (SAY MOL)
ONLINE 598
STM (1 R ?) (RESP MOL) (WRONG ?) (3B ?) (2 £ 7)
(STIM REB)

sdisplay 5-6
5 (USED X1) (WRONG X2) «> (REP USED COND)
55.(1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
57 (3K ?) (1 B?) «> (USED) (DEP (REPLY MAB))
(SAY MAB)
58.(1B7) «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59.(1 C?) > (USED) (DEP (REPLY DER)) (SAY DER)
595 (1 N?) «> (USED) (DEP (REPLY LEG)) (SAY LEQ)
598 (1 R?) «> (USED) (DEP (REPLY MOL)) (SAY MOL)
6 - (RESP) «> (DEP (REPLY 7)) (SAY 7)
(ATTEND RESP)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) = (dep (atim noj))
STM: (STIM NOJ) (READY)

1 TRUE IN PS
STM (1 N 7) (3 J ?) (2 0 ?) (STIM NOJ)

5.95 TRUE IN PS

LEQ




STM: (REPLY LEQ) (USED (1N ) (347) (20 ?”)
(STIM NDJ)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (resp ped))
STM (RESP PED) (REPLY LEQ) (USED (1 N M@BIN
(2 07) (STIM NOJ)

4 TRUE IN PS
STM (WRONG LEQ) (RESP PED) (USED (1 N MBI
(2 Q0 7) (STIM NOJ)

[ 5 TRUE IN PS

STM: (COND (1 N 7)) (WRDNG LEQ) (RESP PED) (3 J 7)
f (20 7) (STIM NOJ)

7 TRUE IN PS
NOW INSERTING
(3J7) (1 N?) «> (USED) (DEP (REPLY PED)) (SAY PED)
ON LINE 593
STM (3 J 7) (RESP PED) (WRONG LEQ) (207
(STIM NOJ)

«display 5-6
5. (USED X1) (WRDNG X2) «> (REP USED COND)
55 (1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
$57.(3K?)(1B?) «> (USED) (DEP (REPLY MAB))

. (SAY MAB)
58 (187 «> (USED) (DEP (REPLY LLQ)) (SAY LUQ)
y 59 (1 C? «> (USED) (DEP (REPLY DER)) (SAY DER)
X 593 (347 (1 N7 «> (USED) (DEP (REPLY PED))
(SAY PED)

595 (1 N?) «> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
598 (1 R?) «> (USED) (DEP (REPLY MOL)) (SAY MDL)
6 - (RESP) «> (DEP (REPLY 7)) (SAY 7)
(ATTEND RESP)

sinitislize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (stim pax))
STM. (STIM PAX) (READY)

1 TRUE IN PS
STM: (1 P7) (3X 7) (2 A7) (STIM PAX)

5.5 TRUE IN PS
CON

STM: (REPLY CON) (USED (1 P 7)) (3 X N(@2A?)
(STIM PAX)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (resp con))
STM: (RES® CON) (REPLY CON) (USED (1PN (33X
(2 A7) (STIM PAX)

sinitishize fire

INITIALIZED
2 TRUE IN PS

QUTPUT FOR (ATTEND STIM) = (dep (stim bek))
STM. (STIM BEK) (READY)

1 TRUE IN PS

III-3.

STM (1 B 7) (3K 7) (2 E 7) (STIM BEK)
57 TRUE IN PS

MAB

STM (REPLY MAB) (USED (3 K 7)) (USED b 7))
(2 E7) (STIM BEK)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) - (dep (resp lug))
STM. (RESP LUQ) (REPLY MAB) (USED (3 K )
(USED (1 B 7)) (2 € 7) (STIM BEK)

4 TRUE IN PS
STM (WRONG MAB) (RESP LUQ) (USED (3K"”)
(USED (1 B 7)) (2 E 7) (STIM BEK)

5 TRUE IN PS
STM: (COND (3 K 7)) (WRDNG MAB) (RESP LUQ)
(USED (1 B 7)) (2 E 7) (STIM BEK)

5 TRUE IN PS
STM (COND (1 B 7)) (WRDNG MAB) (COND (3K7)
(RESP LUQ) (2 E 7) (STIM BEK)

7 TRUE IN PS
NOW INSERTING
(ZE?N (1B?)(3K?7) «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
ONLINE S6

STM: (2 E 7) (RESP LUQ) (WRONG MAB) (STIM BEK)

«dispiay 5-6
5 (USED X1) (WRONG X2) «> (REP USED COND)
55.(1P7?) > (USED) (DEP (REPLY CON)) (SAY CON)
56 (2EN (1 B87)(3K?) > (USED)
(DEP (REPLY LUQ)) (SAY LUQ)
573K (1 B7 <> (USED) (DEP (REPLY MAB))
(SAY MAB)
58 (187 «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C?” > (USED) (DEP (REPLY OER)) (SAY DER)
593 (B3JM (1 N?) «> (USED) (DEP (REPLY PED))
(SAY PED)
595 (1 N?) «> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
598 (1 R?) «> (USED) (DEP (REPLY MOL) (SAY MOL)
6 - (RLSP) <> (DEP (REPLY 7)) (SAY ?)
(ATTEND Q:SP)

sinitialize fire

INITIALIZED
2 TRUE [M PS

OUTPUT FOR (ATTEND STIM) » (dep (stim cit))
STM (STIM CIT) (READY)

1 TRUE IN PS
STM (1C 72 (3T 72) (217 (STIMCIT)

59 TRUE IN PS
OER

STM: (REPLY DER) (USED (1 C 7)) (3T 7) (217
(STIM CIT)

3 TRUE IN PS

e ———



OUTPUT FOR (ATTEND RESP) = (dep (resp der))
STM (RESP DER) (REPLY DER) (USED (1 C ) (3 T ?)
(2 17?)(STIMCIT)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) - (dep (stim buk))
STM: (STIM BUK) (READY)

I TRUE IN PS
STM: (1 B ?) (3K ?) (2 U ?) (STIM BUK)

57 TRUE IN PS

MAB

STM: (REPLY MAB) (USED (3 K 7)) (USED (1 B 7))
(2 U ?) (STIM BUK)

3 TRUE IN PS
OUTPUT FOR (ATTEMND RESP) « (dep (resp mab))
STM. (RESP MAB) (REPLY MAB) (USED (3 K 7))
(USED (1 B 7)) (2 U ) (STIM BUK)

oinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) (dep (atim nal))
STM: (STIM NAL) (READY)

1 TRUE IN PS
STM (1 N?) (3L ?) (2 A?) (STIM NAL)

5.95 TRUE IN PS
LEQ

STM: (REPLY LEQ) (USED (1 N”) (3L ?) (2A ?)
(STIM NAL)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (resp leq))
STM:- (RESP LEQ) (REPLY LEQ) (USED (1 N?)) (3 L ?)
(2 A ?) (STIM NAL)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) (dep (stim reb))
STM: (STIM REB) (READY)

1 TRUE IN PS
STM: (1 R7) (3B ?) (2 E 7) (STIM REB)

5.98 TRUE IN PS
MOL

STM. (REPLY MOL) (USED (1 R 7)) (3B ?) (2 € 7)
(STIM REB)

3 TRUE IN PS
QUTPUT FOR (ATTEND RESP) « (dep (resp mol))
STM: (RESP MOL) (REPLY MOL) (USED (1 R 7)) (3 B ”

(2 E?) (STIM REB)

sinitiahize ‘ire

INITIALIZED
2 TRUE IN PS

QUTPUT FOR (ATTEND STIM) « (dep (stim noj))
STM: (STIM NOJ) (READY)

I TRUE IN PS
STM: (1 N 2) (3 J?) (2.0 7) (STIM NOJ)

5.93 TRUE IN PS

PED

STM: (REPLY PED) (USED (3 J 7)) (USEV (I N 7))
(20 ?) (STIM NOJ)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (resp ped))
STM (RESP PED) (REPLY PED) (USED (3 J 7))
(USED (1 N 7)) (2 0 ?) (STIM NOJ)

odisplay 5-6
5. (USED X1) (WRONG X2) «> (REP USED COND)
55 (1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
56 (2E?) (1 B?) (3K?) > (USED)
(DEP (REPLY LUQ)) (SAY LUQ)
57 (3K ?) (1 B?) > (USED) (DEP (REPLY MAB))
(SAY MAB)
58 (1 B?) a> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C?) «> (USED) (DEP (REPLY DER)) (SAY DER)
593 (3J7) (1 N?) > (USED) (DEP (REPLY PED))
(SAY PED)
585 (1 N?) «> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
598 (1 R?) «> (USED) (DEP (REPLY MOL)) (SAY MOL)
6 - (RESP) «> (DEP (REPLY ?)) (SAY ?)
(ATTEND RESP)

simbialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) = (dep (stim pax))
STM: (STIM PAX) (READY)

I TRUE IN PS
STM. (1 P 2) (3X ?) (2 A ?) (STIM PAX)

5.5 TRUE IN PS

CON

STM: (REPLY CON) (USED (1P ) (3X ) (2A ?)
(STIM PAX)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) = (dep (resp con))
STM. (RESP CON) (REPLY CON) (USED (1 P 7)) (3 X ?)
(2 A7) (STIM PAX)

sinitialize fire

INITIALIZED
2 TRUE IN P3

OUTPUT FOR (ATTEND STIM) « (dep (stim bek})
STM: (STIM BEK) (READY)

I — T T T




ITI-5.
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1 TRUE IN PS
STM: (1 B ?) (3K ?) (2E ?) (STIM BEK)

5.6 TRUE IN PS
LuQ

STM. (REPLY LUQ} (USED (2 E 7)) (USED (1 B 7))
(USED (3 K 7)) (STIM BEK)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (resp lug))
STM (RESP LUQ) (REPLY LLQ) (USED (2 € 7))
(USED (1 B 7)) (USED (3 K ?)) (STIM BEK)

sinttialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) = (dep (stim cit))
STM (STIM CIT) (READY)

1 TRUE IN PS
STM (1 C?) (3T 7)(21?) (STIMCIT)

59 TRUE IN PS

DER

STM (REPLY DER) (USED (1 C ) (3T 7)(21?)
(STIM CIT)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) = (dep (resp der))
STM: (RESP DER) (REPLY DER) (USED (1 C 7)) (3T ?)
(217?) (STIMCIT)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (stim buk))
STM (STIM BUK) (READY)

1 TRUE IN PS
STM: (1 B ?2) (3K 7) (2 U ?) (STIM BUK)

57 TRUE IN PS

MAB

STM (REPLY MAB) (USED (3 K 7)) (USED (1 B 7))
(2 U ?) (STIM BUK)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (reep mab))
STM: (RESP MAB) (REPLY MAB) (LSED (3K 7))
(USED (1 B 7)) (2 U ?) (STIM BUK)

sinitislize tire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) - (dep (etim nal))
STM: (STIM NAL) (READY)

I TRUE IN PS

STM (1 N?) (3L 7) (2 A ?) (STIM NAL)
595 TRUE IN PS
LEQ

STM (REPLY LEQ) (USED (1IN (BL D (2A YD)
(STIM NAL)

3 TRUE IN PS
OL'TPUT FOR (ATTEND RESP) = (dep (resp leg))
STM (RESP LEQ) (REPLY LEQ) (USED (1 N?2) (3L ?)
(2 A ?) (STIM NAL)

aimtialize fire

INGTIALIZED
2 TRUE IN PS

JUTPUT FOR (ATTEND STIM) = (dep (etim reb))
STM (STIM REB) (READY)

1 TRUE IN PS
STM (1 R?) (3B ?) (2 E?) (STIMREB)

598 TKUE IN PS
MOL

STM (REPLY MOL) (USED (1 R”) (3B (2E?)
(STIM REB)

3 TRUE INPS
OUTPUT FOR (ATTEND RESP) = (dep (resp mol))
STM (RESP MOL) (REPLY MOL) (USED (1 R?)) {38 ")
(2 £ ?) (STIM REB)

sinitialize fire

INITIALIZED
2 TRUE IN PS

OUTPUT FOR (ATTEND STIM) « (dep (etim noj))
STM (STIM NOJ) (READY)

1 TRUE IN PS
STM (1 N?)(3J7) (2 07) (STIM NOJ)

5.93 TRUE IN PS
PED

STM (REPLY PED) (USED (3 J 7)) (USED (1 N 7))
(2 0 ?) (STIM NOJ)

3 TRUE IN PS
OUTPUT FOR (ATTEND RESP) « (dep (reep ped))
STM (RESP PED) (REPLY PED) (USED ‘3 J 7))
(USED (L N 7)) (2 0 ) (STIM NOJ)

odieplay
1 (READY) (STIM X1) > (REM (READY))
(PERCEIVE X1 ?)
. (READY) <> (ATTEND STIM)
(REPLY) - (RESP) > (ATTEND RESP)
. (REPLY X1) - (RESP X1) => (REP REPLY WRONG)
(USED X1) (WRONG X2) «> (REP USED COND)
(1 P?) «> (USED) (DEP (REPLY CON)) (SAY CON)
H(2E) (1 BN(BK? o> (USED)

ONADWN

(S, 5]



(DEP (REPLY LUQ)) (SAY LUQ)
57.(3K?)(187) «> (USED) (DEP (REPLY MAB))
(SAY MAB)
58 (1 B7) «> (USED) (DEP (REPLY LUQ)) (SAY LUQ)
59 (1 C?) «> (USED) (DEP (REPLY DER)) (SAY DER)
593 (3J7) (1 N7 > (USED) (DEP (REPLY PED))
(SAY PED)
595 (1 N?) «> (USED) (DEP (REPLY LEQ)) (SAY LEQ)
5.98.(1 R?) «> (USED) (DEP (REPLY MOL)) (SAY MOL)
6. - (RESP) => (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)
7. (X1 X2 7) (RESP X3) (WRONG X4) «>
(COND (X1 X2 7))
(ACTION (USED) (DEP (REPLY X3)) (SAY X3))
(PROD (SAY X4)) (STOP)

III-6.




APPENDIX IV. Trace of EPAM? Production System.

*memory display pe displey
MEMORY MODE
1 STM « (READY)

PS MODE

1. (READY) (STIM X1) «> (REM (READY))
(PERCEIVE X1 ?)

2. (READY) <> (ATTEND STIM)

3 (REPLY) - (RESP) «> (ATTENC RESP)

4 (REPLY X1) - (RESP X1) > (REP REPLY WRONG)

S. (REPLY X1) (RESP X1) «> (SiOP)

6. (USED) (TEST X1) - (TEST X2) «>
(REP USED USED.)

7. (TEST X1) (TEST X2) (X3 X4 ?) «>
(REM (X3 X4 7))

8. (TEST X1) (TEST X2} - (R-GEN) «>
(DEP (REPLY X1) (R-GEN)) (SAY X1)

8 - (RESP) «> (DEP (REPLY ?7)) (SAY 7)
(ATTEND RESP)

10. (RESP X1) - (X2 X3 RESP) «> (PERCEIVE X} RESP)

11. (WPONG) (TEST X1) (STIM X1) - (R-GEN) >
(DEP (R-GEN))

12 (OLD X1) (R-GEN) > (REP OLD COND)
(DEP (HOLD X 1))

13. (USED X1) (USED.) (R-GEN) > (REP USED COND)
(DEP (HOLD X1))

14 (R-GEN) (COND (X1 X2 7)) (X1 X2 RESP) o>
(REM (X1 X2 RESP))

15 (X1 X2 RESP) (RESP X3) (WRONG X4) - (DONE)
«> (COND (X1 X2 7))
(ACTION (OLD) (DEP (REPLY X3)) (SAY X3))
(PROD (SAY X4) (TEST X4)) (DEP (DONE))

16 (USED. X1) > (REP USED. COND)

17. (OLD) (DONE) - (TEST) «> (REP OLD COND)

18 (R-GEN) (HOLD (X1 X2 %) «>
(REM (HOLD (X1 X2 2))) (ACTION (DEP (X1 X2 )

19 (R-GEN) (X1 X2 RESP) (STIM X3) (WRONG X4) o>
(ACTION (DEP (TEST X3)))
(ACTION (USED) (DEP (X1 X2 7))
(PROD (DEP (TEST X3))) (STOP)

20 (X1 X2 ?) (X3 X4 RESP) (STIM X5) (WRONG X6)
*> (COND (X1 X2 7))
(ACTION (USED) (DEP (X3 X4 ?)) (DEP (TEST X))
(PROD (SAY X6)) (STOP)

ifire

2

OUTPUT FOR (ATTEND STIM) « (dep (stim pax))
19

?

OUTPUT FOR (ATTEND RESP) « (dep (resp con))
41018

NOW INSERTING

(1C?7) <« (OLD) (DEP (REPLY CON)) (SAY CON)
ON LINE 85

20

NOW INSERTING

(1 P?) «> (USED) (DEP (1 C 7)) (DEP (TEST PAX))
ON LINE 88

odispisy 8-9
8 (TEST X1) (TEST X2) - (R-GEN) o>
(DEP (REPLY X1) (R-GEN)) (SAY X1)

Iv-1,

85 (1 C7?) «> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) > (USED) (DEP (1 C 7))
(DEP (TEST PAX))
9 - (RESP) > (DEP (REPLY 7)) (SAY 7)
(ATTEND RESP)

sinttialize fire

INITIALIZED

2

OUTPUT FOR (ATTEND STIM) » (dep (stim bek))
19

?

OUTPUT FOR (ATTEND RESP) « (dep (resp lug))
41015

NOW INSERTING

(1L7?) => (OLD) (DEP (REFLY LUQ)) (SAY LUQ)
ONLINE 89

20

NOW INSERTING

(1 B7) => (USED) (DEP (1 L ?)) (DEP (TEST BEK))
ON LINE 895

«display 8-9
8 (TEST X1) (TEST X2) - (R-GEN) =>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
85 (1 C?) «> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) o> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
89 (1L 7?7 <> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
885 (1 B2 => (USED) (DEP (1 L 7))
(DEP (TEST BEK))
9 - (RESP) <> (DEP (REPLY 7)) (SAY ”
(ATTEND RESP)

vinttialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (stim cit))
1 85

CON

3
OUTPUT FOR (ATTEND RESP) « (dep (resp der))

41015

NOW INSERTING

(1 D?) => (OLD) (DEP (REPLY DER)) (SAY DER)
ONLINE 83

17 20
NOW INSERTING
(3T ?2) (1 C? <> (USED) (DEP (1 D ?)) (DEP (TEST CIT))
ONLINE 84

«display 8-9
8 (TEST X1) (TEST X2) - (P-GEN) >
(DEP (REPLY X1) (R-GEN)) (AY X1)
83 (1 D?) «> (OLD) (DEP (REPLY DER)) (SAY OER)
84 (377 (1 C? > (USED) (DEP (1 D ”)
(DEP (TEST CITY)
85 (1 C7?) <> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1P ?) o> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
89 (1L 7?7 «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)

o L e e e e e b B




895. (1 B?) «> (USED) (DEP (1 L 7))
(DEP (TEST BEK))
9 - (RESP) «> (DEP (REPLY 7)) (SAY ?7)
(ATTEND RESP)

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) (dep (atim buk))
1895689

LuQ

3
OUTPUT FOR (ATTEND RESP) « (dep (resp mob))

41015

NOW INSERTING

(1 M?) o> (OLD) (DEP (REPLY MAB)) (SAY MAB)
ON LINE 885

16 20
NOW INSERTING
(3K?) (187 e (USED) (DEP (1 M 7)) (DEP (TEST BUK))
ON LINE 888

+display 8-9
B. (TEST X1) (TEST X2) - (R-GEN) «>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D?) «> (OLD) (DEP (REPLY DER)) (SAY DER)
84. (3772 (1C? <> (USED) (DEP (1 D 7))
(DEP (TEST CIT))
85 (1 C?) o> (OLD)(DEP (REPLY CON)) (SAY CON)
88 (1 P?) =5 (USED) (DEP (1 C 7))
(DEP (TEST PAX))
885 (1 M?) «> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?)(1B7?) «> (USED) (DEP (1 M 7))
(DEP (TEST BUK))
89 (1L 7)) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (1 B?) «> (USED) (DEP (1L 7))
(DEP (TEST BEK))
9. - (RESP) > (DEP (REPLY ?)) (SAY ?)
(ATTEND RESPY

sinttislize fire
INITIALIZED
2
OLTPUT FOR (ATTEND STIM) » (dep (stim nal))
19

7

OUTPUT FOR (ATVEND RESP) = (dep (resp leg))
410 15

NOW INSERTIN'

(1L?7) > (0.D) (DEP (REPLY LEQ)) (SAY LEQ)
ON LINE BOP

20

NOW INSERTING

(1 N?) o> (USED) (DEP (1 L 2)) (DEP (TEST NAL))
ON LINE B899

«display 8-9
8. (TEST X1) (TEST X2) - (R-GEN) >
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D?) > (OLD) (DEP (REPLY DER)) (SAY DER)
84.(3T7)(1C? = (USED) (DEP (1 D 7))

Iv-2.

(DEP (TEST CIT))
85 (1 C?) => (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) «> (USED) (DEP (1 C ?))

(DEP (TEST PAX))
885 (1 M?) «> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K ?)(1 B?) = (USED) (DEP (1 M ?))

(DEP (TEST BUK))
8.9.(1L?) <> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
8.95. (1 B ?) «> (USED) (DEP (1 L ?))

(DEP (TEST BEK))
898 (1 L ?) => (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
899 (1 N?) «> (USED) (DEP (I L 7))

(DEP (TEST NAL))

9. - (RESP) > (DEP (REPLY ?)) (SAY ?)
(ATTEND RESP)

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (stim reb))
19

2

OUTPUT FOR (ATTEND RESP) = (dep (resp mol))
41015

NOW INSERTING

(1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
ON LINE 8.995

20

NOW INSERTING

(1 R?) => (USED) (DEP (1 M ?)) (DEP (TEST REB))
ON LINE 8998

+display 8-9
8 (TEST X1) (TEST X2) - (R-GEN) «>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D?) > (OLD) (DEP (REPLY DER)) (SAY DER)
B4 (3T 7)(1C? e (USED) (DEP (1 D 7))
(DEP (TEST CIT))
85 (1 C?) «> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) «> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
885 (1 M?) «> (OLD) (DEP (REPLY MAB)) (SAY MAS)
888 (3K ?)(1B?) > (USED) (DEP (1 M ?))
(DEP (TEST BUK))
89 (1L 7?) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (1 B?) «> (USED) (DEP (i L 7))
(DEP (TEST BEK))
898 (1L 7) «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
8.99 (1 N?) «> (USED) (DEP (1 L 7))
(DEP (TEST NAL))
8995 (1 M ?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8.998 (1 R?) > (USED) (DEP (1 M ?))
(DEP (TEST REB))
9. - (RESP) <> (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (etim noj))
1 899689

LuQ




3
OUTPUT FOR (ATTEND RESP) « (dep (resp ped))

410 15

NOW INSERTING
(1 P?) o> (OLD) (DEP (REPLY PED)) (SAY PED)
ON LINE 889

16 20
NOW INSERTING
(B3I (IN?) o> (USED) (DEP (1 P 2)) (DEP (TEST NOJ))
ON LINE 8895

«display 8-9
8. (TEST X1) (TEST X2) - (R-GEN) «>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (107 > (OLD) (DEP (REPLY DER)) (SAY DER)
84 (3T2)(1C? > (USED) (DEP /1 D 7))
(DEP (TEST CIT))
85 (1 C?) > (OLD) {DEP (REPLY CON)) (SAY CON)
88 (1 P?) e (USED) (DEP (I C 7))
(DEP (TEST PAX))
885 (1 M?) «> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?)(18B7?) o> (USED) (DEP (1 M ?)
(DEP (TEST BUK))
889 (1 P?) «> (OLD) (DEP (REPLY PED)) (SAY PED)
8895 (3J7) (1 N?) «> (USED) (DEP (1 P 7))
(DEP (TEST NOJY)
89 (1L7?) <> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (187 «> (USED) (DEP (1 L ?)
(DEP (TEST BEK))
898 (1L? «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
899 (1 N?) «> (USED) (DEP (1 L ?))
(DEP (TEST NAL))
8995 (1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8.998 (1 R?) > (USED) (DEP (1 M 7))
(DEP (TEST REB))
9. - (RESP) «> (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

sinitislize fire
INITIALIZED
2
QUTPUT FOR (ATTEND STIM) « (dep (stim pex))
188685

CON

3
OUTPUT FOR (ATTEND RESP) « (dep (resp con))
5

ainthialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (stim bek))
1 88866885

MAB

3

OUTPUT FOR (ATTEND RESP) « (dep (resp luq))
410 15

NOW INSERTING

(1L ?) o> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
ON LINE 883

16 16 20
NOW INSERTING

(2E?)(3K?)(1B7?) «> (USED) (DEP (1 L 7)) (DEP (TLST BEK))

ON LINE 884

+display 8-9
8 (TEST X1) (TEST X2) - (R-GEN) o>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 07?) «> (OLD) (DEP (REPLY DER)) (SAY DER)
84 (3T 7)(1C?) «> (USED) (DEP (1 D ?))
(DEP (TEST CIT))
85 (1 C7? <> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) «> (USED) (DEP (1 C ?)
(DEP (TEST PAX))
883 (1 L7) = (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
884 (2E")(3K? (187 e (USED)
(DEP (1 L 7)) (DEP (TEST BEK))
885 (1 M?) > (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?”) (1 B7) <> (USED) (DEP (1 M ?))
(DEP (TEST BUK))
889 (1 P?) «> (OLD) (DEP (REPLY PED)) (SAY PED)
8895 (3J7?) (1 N?) «> (USED) (DEP (1 P ?))
(DEP (TEST NOJ)
89 (1 L7) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
8.95. (1 B ?) «> (USED) (DEP (1L ?))
(DEP (TEST BEK))
898 (1 L7?) «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
899 (1 N?) «> (USED) (DEP (1 L ?)
(DEP (TEST NAL))
8995 (1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8998 (1 R?) «> (LISED) (DEP (1 M ?))
(DEP (TEST RB))
S - (RESP) > (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

amtialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (stim cit))
1846683

DER

3
OUTPUT FOR (ATTEND RESP) « (dep (resp der))
5

vinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (stim buk))
1 88866 885

MAB

3
QUTPUT FOR (ATTEND RESP) « (dep (resp meb))
5

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (stim nal))
1 8996 883




LuQ

3
OUTPUT FOR (ATTEND RESP) « (dep (reep leq))
. 41011121415
NOW INSERTING
(3Q7)(1L7?) «: (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
ON LINE 882
. 16 18 19
NOW INSERTING

(1%7) <> (USED) (DEP (3 Q 7)) (DEP (TEST NAL)) (DEP N )]

. ON LINE 8985

+digplay 8-9
8 (TEST X1) (TEST X2) - (R-GEN) o>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D7) <> (OLD) (DEP (REPLY DER)) (SAY DER)
84 (3T7)(1C? «> (USED) (DEP (1 D 7))
(DEP (TEST CIT))
85 (1 C7?) «> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) «> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
882 (3Q7?) (1L ?) «> (OLD) (DEP (REPLY LEQ))
(SAY LEQ)
883 (1L ?) «> (OID)(DEP (REPLY LUQ)) (SAY LUQ)
884 (2E7)(3K? '1 B?) > (USED)
(DEP (1 L 7)) (DL® (TEST BEK))
885 (1 M?) <> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?)(18B7?) «> (USED) (DEP (1 M 7))
(DEP (TEST BUK))
889 (1 P?) .. (OLD) (DEP (REPLY PED)) (SAY PED)
8895 (3J) (I N?) o> (USED) (DEP (1 P %)
(DEP (TEST NOJ))
89 (1L7?) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (1 B?) > (USED) (DEP (1 L 7))
(DEP (TEST BEK))
898 (1L 7 <> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
8385 (1 N?) «> (USED) (DEP (3Q 7))
(DEP (TEST NAL)) (DEP (1 L 7))
99 (1 N?) «> (USED) (DEP (1 L ?))
(DEP (TEST NAL))
8995 (1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8998 (1 R ?) <> (USED) (DEP (1 M 7))
(DEP (TEST REB))
8. - (RESP) «> (DEP (REPLY 7)) (SAY ?)
(AT7: 4D RESP)

sinitalize fire
INITIALIZ2ED
4

OUTPUT FOR (ATTEND STIM) « (dep (etim reb))
1 8998 6 885

i MAB

3

OUTPUT FOR (ATTEND RESP) « (dep (reep mol))
41011121415

NOW INSERTING

(3L ?7) (1 M7 <> (OLD) (DEP (REPLY MOL;) (SAY MOL)
ON LINE 8845

16 18 19
NOW INSERTING

(1 R?) <> (USED) (DEP (3 L 7)) (DEP (TEST REB)) (DEP (1M
ON LINE 8097

«dieplay 8-9
8 (TEST X1) (TEST X2) - (R-GEN) «>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 0?) => (OLD) (DEP (REPLY DER)) (SAY DER)
84 (3T 72)(1C? <> (USED)(DEP (1 D 7))
(DEP (TEST CIT))
85 (1 C?) «> (OLD) (DEP (REPLY CON)) (SAY CON)
88 (1 P?) <> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
882 (3Q (1 L7 <> (OLD) (DEP (REPLY LEQ))
(SAY LEQ)
883 (1L 7?) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
884 (2E?)(3K?)(1B?) «> (USED)
(DEP (1 L 7)) (DEP (TEST BEK))
8845 (3L 7) (1 M?) «> (OLD) (DEP (REPLY MOL))
(SAY MOL)
885 (1 M?) <> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?) (1 B7 <> (USED) (DEP (1 M 7))
(DEP (TEST BUK))
889 (1 P?) <> (OLD) (DEP (REPLY PED)) (SAY PED)
8895 (3J7) (1 N?) > (USED) (DEP (1 P 7},
(DEP (TEST NOJ))
8.9 (1 L7 «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (1 B ?) > (USED) (DEP (1L 7))
(DEP (TEST BEK))
898 (1L 7 «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
8.985 (1 N?) «> (USED) (DEP (3Q 7))
(DEP (TEST NAL)) (DEP (1 L 7))
899 (1 N?) «> (USED) (DEP (1L 7))
(DEP (TEST NAL))
8995. (1 M?) > (OLD) (DEP (RePLY MOL)) (SAY MOL)
8.997. (1 R?) «>* (USED) (DEP (3L 7))
(DEP (TEST REB)) (DEP (1 M )
8.998 (1 R?) «> (USED) (DEP (1 M 7))
(DEP (TEST REB))
9 - (RESP) > (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (etim noj))
188956688778

PAX

3

OUTPUT FOR (ATTEND RESP) « (dep (reep ped))
410131415

NOW INSERTING

(3D 7?) (1 P? <> (OLD) (DEP (REPLY PED)) (SAY PED)
ON LINE 87

16 16 18 19

NOW INSERTING

(3J7) (1 N?) o> (USED) (DEP (3D 7)) (DEP (TEST NOJ)) (DEP (1 T )
ON LINE £893

«display 8-9
8. (TEST X1) (TEST X2) - (R-GEN) o>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D7) «> (OLD) (DEP (REPLY DER)) {SAY DER)
84 (3T 7)(1C? > (USED) (DEP (1 D 7))
(DEP (TEST CIT))
85.(1C? «> (OLD) (DEP (REPLY CON)) (SAY CON)




87 (30?7 (1 P?) «> (OLD) (DEP (REPLY PED))
(SAY PED)
88 (1 P?) > (USED) (DEF (1 C 7))
(DEP (TEST PAX))
882 (3Q72)(1L7?7) «> (OLD) (DEP (REPLY LEQ))
(SAY LEQ)
883 (1L7) «> (OLD) (DEP (REPLY LUQ)) (SAY LLQ)
884 (2E?)(3IK?)(1B7) »> (USED)
(DEP (1 L 7)) (DEP (TEST BEK))
8845 (3L ?) (1 M?) «> (OLD) (DEP (REPLY MOL))
(SAY MOL)
885 (1 M?) o> (OLD) (DEP (REPLY MAB)) (SAY MAB)
888 (3K?) (1 B7) «> (USED) (DEP (1 M?))
(DEP (TEST BUK))
889 (1 P?) «> (OLD) (DEP (REPLY PED)) (SAY PED)
8893 (3J7) (1 N?) «> (USED) (DEP (3D 7))
(DEP (TEST NOJ)) (DEP (1 P 7))
8895 (3J7) (1 N?) «> (USED) (DEP (1 P )
(DEP (TEST NOJ))
89 (1L7) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
895 (1 B?) «> (USED) (DEP (1L 7))
(DEP (TEST BEK))
898 (1L 7 «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
8985 (1 N?) «> (USED) (DEP (3Q 7))
(DEP (TEST NAL)) (DEP (1L 7))
899 (1 N?) => (USED) (DEP (1L 7))
(DEP (TEST NAL))
8995 (1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8997 (1 R?) > (USED) (DEP (3L 7))
(DEP (TEST REB)) (DEP (1 M 7))
8998 (1 R?) «> (USED) (DEP (1 M ?))
(DEP (TEST REB))
9. - (RESP) «> (DEP (REPLY 7)) (SAY ?)
{ATTEND RESP)

sinttialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (stim pax))
188685

CON

3
OUTPUT FOR (ATTEND RESP) « (dep (resp con))
5

sinitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (atim bek))
1884666883

LuQ

3
OUTPUT FOR (ATTEND RESP) « (dep (resp luq))
5

amtialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (stim cit))
1846683

3
OUTPUT FOR (ATTEND RESP) « (dep (resp der))
5

amtialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) e (dep (stim buk))
1 88866 885

MAB

3
UTPUT FOR (ATTEND RESP) = (dep (resp mab))
5

amtialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) = (dep (atim nal))
1 89856 882

LEQ

3
OUTPUT FOR (2’ TEND RESP) = (dep (resp leq))
S

Jdmtialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (stim reb))
1 89397 6 8 845

MOL

3
OUTPUT FOR (ATTEND RESP) « (dep (resp mol))
5

anitialize fire
INITIALIZED
2
OUTPUT FOR (ATTEND STIM) « (dep (stim noj))
1 88936687

PED

3
OUTPUT FOR (ATTEND RESP) = (dep (resp pad))
5

«display

1. (READY) (STIM X1) «> (REM (READY))
(PERCEIVE X1 ?)

. (READY) «> (ATTEND STIM)

. (REPLY) - (RESP) «> (ATTEND RESP)

. (REPLY X1) - (RESP X1) > (REP REPLY WRONG)
(REPLY X1) (RESP X1) «> (STOP)

. (USED) (TEST X1) - (TEST X2) «>
(REP USED USED.)
(TEST X1) (TEST X2) (X3 X4 ?) o>
(REM (X3 X4 7))




8 (TEST X1) (TEST X2) - (R-GEN) o>
(DEP (REPLY X1) (R-GEN)) (SAY X1)
83 (1 D?) «> (OLD) (DEP (REPLY DER)) (SAY DER)
84 (3T 7)(1C?) «> (USED) (DEP (1 D 7))
(DEP (TEST CIT))
85 (1 C?) <> (OLD) (DEP (REPLY CON)) (SAY CON)
87 (3D 7)(1P? <> (OLD) (DEP (REPLY PED))
(SAY PED)
88 (i P?) «> (USED) (DEP (1 C 7))
(DEP (TEST PAX))
882.(3Q7?) (1L 7 => (OLD) (DEP (REPLY LEQ))
(SAY LEQ)
883 (1L7) «> (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
884 (2E 7 (3K ?)(1B7?) «> (USED)
(DEP (1 L 7)) (DEP (TEST BEK))
8845 (3L 7)) (1 M?) «> (OLD) (DEP (REPLY MOL))
(SAY MOL)
885 (1 M7?) => (OLD) (DEP (REPLY MAB)) (SAY }* _,
888 (3K 7)) (1 B? «> (USED) (DEP (1 M ?))
(DEP (TEST BUK))
889 (1 P?) => (OLD) (DEP (REPLY PED)) (SAY PED)
R893 (3J7) (1 N?) o (USED) (DEP (3D 7))
(DEP (TEST NOJ)) (DEP (1 P 7))
8895 (3J7) (1 N?) «> (USED} (DEP (1 P 7))
(DEP (TEST NOJ))
89 (1L 7?) => (OLD) (DEP (REPLY LUQ)) (SAY LUQ)
885 (1 B?) «> (USED) {DEP (1 L 7))
(DEP (TEST BEK))
898 (1L 7?7) «> (OLD) (DEP (REPLY LEQ)) (SAY LEQ)
5985 (1 N7) «> (USED) (DEP (3Q 7))
(DEP (TEST NAL)) (DEP (1 L 7))
499 (1 N?) =5 (USED) (DEP (1 L ?))
(DEP (TEST NAL))
8995 (1 M?) «> (OLD) (DEP (REPLY MOL)) (SAY MOL)
8997 (1 R?) «> (USED) (DEP (3L 7))
(DEP (TEST REB)) (DEP (1 M 7))
8998 (1 R?) «> (USED) (DEP (1 M ?))
(DEP (TEST REB))
9. - (RESP) > (DEP (REPLY 7)) (SAY ?)
(ATTEND RESP)
10. (RESP X 1) - (X2 X3 RESP) => (PERCEIVE X1 RESP)
11. (WRONG) (TEST X1) (STIM X1) - (R-GEN) =>
(DEP (R-GEN))
12 (OLD X1) (R-GEN) => (REP OLD COND)
(DEP (HOLD X1))
13 (USED X1) (USED:) (R-GEN) => (REP USED COND)
(DEP (HOLD X1))
14. (R-GEN) (COND (X1 X2 7)) (XI X2 RESP) >
(REM (X1 X2 RESP))
15 (X1 X2 RESP) (RESP X3) (WRONG X4) - (DONE)
«> (COND (X1 X2 7))
(ACTION (OLD) (DEP (REPLY X3)) (SAY X3))
(PROD (SAY X4) (TEST X4)) (DEP (DONE))
16. (USED. X1) «> (REP USED. COND)
17. (OLD) (DONE) - (TEST) «> (REP OLD COND)
18 (R-GEN) (HOLD (X1 X2 7)) «>
(REM (HOLD (X1 X2 7))) (ACTION (DEP (X1 X2 7))
19 (R-GEN) (X1 X2 RESP) (STIM X3) (WRONG X4) «>
(ACTION (DEP (TEST X3)))
(ACTION (USED) (DEP (X1 X2 ?)))
(PROD (DEP (TEST X3))) (STOP)
20 (X1 X2 ?) (X3 X4 RESP) (STIM X5) (WRONG X6)
«> (COND (X1 X2 7))
(ACTION (USED) (DEP (X3 X4 ?)) (DEP (TEST X5)))
(PROD (SAY X6)) (STOP)




— =

=

APPENDIX V. Trace of Simple Series Completion Production System on ABAB.

smemory display ps display
MEMORY MODE
1. STM « (READY)

PS MODE

1. (READY) (SERIES X1) => (REP READY CONT)
(OBSERVE X1 ?)

2. (READY) => (ATTEND SERIES)

3.(X17?) - (LOC) «> (COND (1 X4 ?7)
(ACTION (DEP (NEXT X1))) (PROD END)
(DEP (LOC X1))

4. (0 X17?) => (SUCC)

5. (ERROR) (SERIES X1) (LOC X2) - (X37) =>
(CLEAR (SERIES X1) (LOC X2)) (DEP (READY))

6. (NEXT X!) - (X2?) «> (SAY X1)
(DEP (MATCH) (X1 7)) (STOP)

7. (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1)))

- (MATCH) «> (DEP (MATCH))
8. (USED) - (MATCH) - (ERROR) => (DEP (ERROR))
9. (USED (X1 X2 7)) (NEXT) => (REP USED OLD)
10. (X1 X2 ?) (NEXT) - (DONE) =>
(REP (X1 X2 ?) (OLD (X1 X2 ?))) (DEP (DONE))
11. (OLD (X1 X2 7)) => (REP OLD COND)
(DEP (X1 X2 7))
12 (NEXT X1) (MATCH) (SERIES X2) o>
(REP (NEXT X1) CONT) (REM (MATCH) (DONE))
(PROD (SERIES X2))
13 (LOC X1) (NEXT X2)

(ACTION (USED) (DEP (NEXT X3))) => (REP X1 X3)

(REP (NEXT X2) CONT 2) (REM (DONE))

(PROD (NEXT X1))
14. (X1 ?) (CONT) (X2 7) > (REP X1 (0 X1))

(REM (CONT)) (ACTION (USED) (DEP (NEXT X2)))
15. (X1 ?) (CONT) => (REP X1 (0 X1)) (REM (CONT))

ofire
2 TRUE IN PS

OUTPUT FOR (ATTEND SERIES) = (dep (series abab))
STM: (SERIES ABAB) (READY)

1 TRUE IN PS
STM: (A ?) (B ?) (A ) (B ?) (CONT) (SERIES ABAB)

3 TRUE IN PS
NOW INSERTIMG
(1 X47) => (DEP (NEXT A))
ONLINE 16
STM: (LOC A) (A ?) (R ?) (A ?) (B ?) (CONT)
(SERIES ABAB)

14 TRUE IN PS
STM: (ACTION (USED) (DEP (NEXT B))) (0 A ?) (B ?)
(LOC A) (A ?) (B ?) (SERIES ABAB)

4 TRUE IN PS
STM: (1 A ?) (ACTION (USED) (DEP (NEXT B))) (B ?)
(LOC A) (A ?7) (B ?) {SERIt! *i4B)

16 TRUE IN PS

STM: (NEXT A) (1 A ?)
(ACTION (USED) (DEP (NEXT B))) (B 7) (LOC A)
(A ?) (B ?) (SERIES ABAB)

10 TRUE IN PS

V-1.

STM: (DONE) (OLD (1 A 7)) (NEXT A)
(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(A7) (B ?) (SERIES ABAB)

11 TRUE IN PS

STM. (1 A ?) (COND (1 A 7)) (DONE) (NEXT A)
(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(A ?) (B ?) (SERIES ABAB)

13 TRUE IN PS
NOW INSERTING
(1 A?) => (USED) (DEP (NEXT B))
ON LINE 15585
STM: (LOC B) (CONT) (1 A?) (B?) (A7) (B ?)
(SERIES ABAB)

14 TRUE IN PS
STM: (ACTION (USED) (DEP (NEXT A))) (0 B ?) (A ?)
(LOC B) (1 A ?) (B ?) (SERIES ABAB)

4 TRUE IN PS
STM: (1 B ?) (ACTION (USED) (DEP (NEXT A))) (A 7)
(LOC B) (2 A ?) (B ?) (SERIES ABAB)

16 TRUE IN PS

STM: (NEXT A) (1 B?)
(ACTION (USED) (DEP (NEXT A))) (A ?) (LOC B)
(2 A ?) (B ?) (SERIES ABAB)

10 TRUE IN PS

STM: (DONE) (OLD (1 B ?)) (NEXT A)
(ACTION (USED) (DEP (NEXT A))) (A ?) (LOC B)
(2 A ?) (B ?) (SERIES ABAB)

11 TRUE IN PS

STM: (1 B ?7) (COND (1 B 7)) (DONE) (NEXT A)
(ACTION (USED) (DEP (NEXT A))) (A ?) (LOC B)
(2 A ?) (B ?) (SERIES ABAB)

13 TRUE IN PS
NOW INSERTING
(1 B?) => (USED) (DEP (NEXT A))
ON LINE 153
STM: (LOC A) (CONT) (1 B?) (A7) (2A ?7) (B ?)
(SERIES ABAB)

14 TRUE IN PS
STM: (ACTION (USED) (DEP (NEXT B))) (O A ?) 87
(LOC A) (1 B ?) (2 A ?) (SERIES ABAB)

4 TRUE IN PS
STM: (1 A ?) (ACTION (USED) (DEP (NEXT B))) (B ?)
(LOC A) (2 B ?) (3 A ?) (SERIES ABAB)

155 TRUE IN PS
STM: (NEXT B) (USED (1 A 7))
(ACTION (USED) (DEP (NEXT B))) (B 7) (LOC A)
(2 B ?) (3 A ?) (SERIES ABAB)

7 TRUE IN PS

STM: (MATCH) (NEXT B) (USED (1 A 7))
(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(2 B ?) (3 A7) (SERIES ABAB)

9 TRUE IN PS




STM: (OLD (1 A 7)) (NEXT B) (MATCH)
(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(2 B ?) (3A7) (SERIES ABAB)

10 TRUE IN PS

STM: (DONE) (OLD (2 B ?)) (NEXT 8) (OLD (1 A 7))
(MATCH) (ACTION (USED) (DEP (NEXT B))) (8 ?)
(LOC A) (3 A ?) (SERIES ABAB)

I'1 TRUE IN PS

STM (2 B ?) (COND (2 B 7)) (DONE) (NEXT B)
(OLD (1 A ?)) (MATCH)

(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(3 A7) (SERIES ABAB)

11 TRUE IN PS

STM (1 A7) (COND (1 A ?)) (2 B ?) (COND (2 B 7))
(DONE) (NEXT B) (MATCH)

(ACTION (USED) (DEP (NEXT B))) (B ?) (LOC A)
(3 A7) (SERIES ABAB)

12 TRUE IN PS

STM (CONT) (SERIES ABAB) (1 A7) (2B 7) (B 7)
(LOC A) (3 A7)

15 TRUE IN PS

STM: (0 B ) (SERIES ABAB) (1 A ?) (2 B 7) (LOC A)
(3A?)

4 TRUE IN PS

STM (1 B ?) (SERIES ABAB) (2 A ?) (3 B 7) (LOC A)
(4A?)

15.3 TRUE IN PS

STM: (NEXT A) (USED (1 B 7)) (SERIES ABAB) (2 A ”
(3B 7)(LOCA) (4 A )

6 TRUE IN PS

STM (A ?) (MATCH) (NEXT A) (USEL (1 B 7))
(SERIES ABAB) (2 A 7) (3B 7) (LOC A) (4 A 7)

«display 15-16
15 (X1 ?) (CONT) => (REP X1 (0 X1)) (REM (CONT))
153 (1 B?7) «> (USED) (DEP (NEXT A))
1£5 (1 A7) o> (USED) (DEP (NEXT B))
16. (1 X4 7) => (DEP (NEXT A))

sfire
9 TRUE IN PS
STM (OLD (1 B 7)) (NEXT A) (A ?) (MATCH)
(SERIES ABAB) (2 A7) (3B 7) (LOC A) (4 A ?)

10 TRUE IN PS
STM (DONE) (OLD (2 A 7)) (NEXT A) (OLD (1 B )]

(A7) (MATCH) (SERIES ABAB) (3 B ?) (LOC A)
(4 A?)

I'1 TRUE IN PS
STM (2 A ?7) (COND (2 A 7)) (DUNE) (NEXT A)

(OLD (1 B 7)) (A ?) (MATCH) (SERIES ABAB)
(3B?)(LOCA)(4A 7

11 TRUE IN PS

STM (1 B ?) (COND (1 B 7)) (2 A ?) (COND (2 A 7))
(DONE) (NEXT A) (A ?) (MATCH) (SERIES ABAB)
(3B?7)(LOC A)(4A )

12 TRUE IN PS

STM (CONT) (SERIES ABAB) (1 87 (2A ?) (A ?)
(3B7)(LOCA)(4A?)

15 TRUE IN PS

STM (0 A ?) (SERIES ABAB) (1 B?) (2A?) (387
(LOCA)(4A )

4 TRUE IN PS

STM (1 A ?) (SERIES ABAB) (2B ?) (3A?) (4B ?)
(LOCA)(5A?)

155 TRUE IN PS

STM (NEXT B) (USED (1 A 7)) (SERIES ABAB) (2 8 7)
(3A7) (4B (LOCA)(5A7)

6 TRUE IN PS

STM (B ?) (MATCH) (NEXT B) (USED (1 A 7))

(SERIES ABAB) (2B 7) (3A ?) (4 B ?7) (LOC A)
(5A7)

e




= -

APPENDIX VI. Trace of Simple Series Completion Production System on ABAACAABA. Vied .

s*memory display ps display
MEMORY MODE
1. STM = (READY)

PS MODE
1. (READY) (SERIES X1) «> (REP READY CONT)
(OBSERVE X1 ?)
2. (READY) > (ATTEND SERIES)
3. (X1 ?) - (LOC) => (COND (1 X4 ?))
(ACTION (DEP (NEXT X1))) (PROD END)
(DEP (LOC X1))
4. (0 X1?) => (SUCC)
5. (ERROR) (SERIES X1) (LOC X2) - (X3 ?) =>
(CLEAR (SERIES X1) (LOC X2)) (DEP (READY))
6. (NEXT X1) - (X2 7) «> (SAY X1)
(DEP (MATCH) (X1 ?)) (STOP)
7. (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1)))
- (MATCH) => (DEP (MATCH))
8. (USED) - (MATCH) - (ERROR) «> (DEP (ERROR))
9. (USED (X1 X2 7)) (NEXT) => (REP USED OLD)
10. (X1 X2 ?) (NEXT) - (DONE) =>
(REP (X1 X2 ?) (OLD (X1 X2 ?))) (DEP (DONE))
11. (OLD (X1 X2 7)) «> (REP OLD COND)
(DEP (X1 X2 7))
12. (NEXT X1) (MATCH) (SERIES X2) >
(REP (NEXT X1) CONT) (REM (MATCH) (DONE))
(PROD (SERIES X2))
13. (LOC X1) (NEXT X2)
(ACTION (USED) (DEP (NEXT X3))) => (REP X1 X3)
(REP (NEXT X2) CONT Z) (REM (DONE))
(PROD (NEXT X1))
14. (X1 7) (CONT) (X2 7) «> (REP X1 (0 X1))
(REM (CONT)) (ACTION (USED) (DEP (NEXT X2)))
15. (X1 ?) (CONT) «> (REP X1 (O X1)) (REM (CONT))

ofire
2
OUTPUT FOR (ATTEND SERIES) = (dep (series absacsaba))
13
NOW INSERTING
(1 X47) «> (DEP (NEXT A))
ONLINE 16
14416101113
NOW INSERTING
(1 A?) «> (USED) (DEP (NEXT B))
ON LINE 155
14416101113
NOW INSERTING
(1 B?) => (USED) (DEP (NEXT A))
ON LINE 153
144 15588101 1113
NOW INSERTING
(1A?)(287) «> (USED) (DEP (NEXT A))
ON LINE 15.2
1441559101111 13
NOW INSERTING
(1A?)(2A7) «> (USED) (DEP (NEXT C))
ON LINE 15.1
14416 1011 13
NOW INSERTING
(1 C?) => (USED) (DEP (NEXT A))
ON LINE 15.05
14415591011 1113
NOW INSERTING

(1A?)(2C?) «> (USED) (DEP (NEXT A))

ON LINE 15.03

144151991011 111113

NOW INSERTING

(1A?)(2A7?)(3C?) => (USED) (DEP (NEXT B))

ON LINE 1502
1441537910111112154511441557911
1011121441563791011111214485279910
111111121441517991011111: 121441505
791011111214415037991011111112144
150279991011 11113112144153791011 11
12154152 6

A

*
«display 15-16
15. (X1 ?) (CONT) => (REP X1 (0 X1)) (REM (CONT))
1502. (1 A?)(2A?)(3C7?) => (USED)
(DEP (NEXT B)) .
1503 (1 A?) (2C?) «> (USED) (DEP (NEXT A))
1505. (1 C?) => (USED) (DEP (NEXT A))
15.1. (1 A?) (2 A?) «> (USED) (DEP (NEXT C))
152 (1 A?)(2B7?) «> (USED) (DEP (NEXT A))
15.3.(1 B?) > (USED) (DEP (NEXT A))
165. (1 A?) => (USED) (DEP (NEXT B))
16. (1 X4 7) > (DEP (NEXT A))

+fire
991011 1111121541516
C

+fire
99101111111215415056
A




[ —

APPENDIX VII.  Trace of Complex Series Completion Production System.

smemory display ps display
MEMORY MODE
1 STM « (READY)

PS MODE
(READY) (SERIES X1) => (REP READY CONT)
(DEP (PNUM 2) (COUNTS 0)) (OBSERVES X1 7)
2 (READY) => (ATTEND SERIES) (DEP (PERIOD 1))
3. (COUNT) (COUNTS X1) «> (REM (COUNT))
(REP X1 X1')
4 (0 X17) «> (SUCC)
S (FAIL) (PERIOD X1) (SERIES X2) > (ERASE)
(CLEAR) (DEP (READY) (PERIOD X1') (SERIES X2))
6. (PERIOD X1) (COUNTS X1') (SERIES X2) o>
(ERASE) (CLEAR)
(DEP (READY) (PERIOD X1') (SERIES X2))
7. (NEXT X1) - (X2 7) - (ACTION) «> (SAY ¥1)
(DEP (MATCH) (X1 7)) (STOP)
8 (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT L))
- (MATCH) - (ERROR) «> (DEP (MATCH))
8 (X1 X2 ?) (NEXT) - (DONE) «>
(DEP (OLD (X1 X2 7))) (DEP (DONE))
10. (USED (X1 X2 7)) «> (REP USED OLD)
(DEP (X1 X2 7))
11.(OLD (X1 X2 7)) «> (REP OLD COND)
12 (MATCH) (NEXT X1) (SERIES X2) (LOC X3) «>
(REP (NEXT X1) CONT 2)
(REM (MATCH) (DONE) (LOC X3)) (PROD (SERIES X2))
13 (LOC X1) (NEXT X2) (PERIOD X3) (SERIES X4)
(COUNTS X5) «> (REM (LOC X1) (DONE) (ERRORY)
(REP (NEXT X2) CONT) (PRODS (LOC X1) X3 X4 X5)
14. (CONT) (X1 ?) (PNUM X2) (X3 ?) «>
(REP X1 (0 X1) 2) (REP X2 X2' 3) (REM (CONT))
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2))
15 (CONT) (X1 7) «> (REP X1 (O X1) 2)
(REM (CONT))
16 (1 X17) > (DEP (NEXT X1) (LOC 1))

—

ofire
2
OUTPUT FOR (ATTEND SERIES) « (dep (series cdeded))
11441691113
NOW INSERTING
(1 X17) > (USED) (DEP (NEXT X1')) (DEP (LOC 2))
ON LINE 155
314415591011 11} 13
NOW INSERTING
(2 X17?) (1 X27) «> (USED) (DEP (NEXT C)) (DEP (LOC 3))
ON LINE 153
511441691)] 13
NOW INSERTING

(1 X17) «> (USED) (DEP (NEXT D)) (DEP (LOC 2)) (DEP (ERROR))

ON LINE 155

14415591011 1) 13

NOW INSERTING

(2 X1?2) (1 X27) «> (USED) (DEP (NEXT X1)) (DEP (Loc 3)
ONLINE 153
314415389101011111112144153839 1010 11

11111214415389101011 111112 1541537
c

ofire

91010111111121541537
0

VII-1.

«display 15-16
15 (CONT) (X1 7) o> (REP X1 (0 X1) 2)
(REM (CONT))
153 (2 X1 7) (1 X2 7) «> (USED) (DEP (NEXT X1))
(DEP (LOC 3))
155 (1 X1?7) «> (USED) (DEP (NEXT D))
(DEP (LOC 2)) (DEP (ERROR))
16 (1 X17) => (DEP (NEXT X1) (LOC 1))

smemory display ps display
MEMORY MODE
1. 5TM « (READY)

PS MODE

1 (READY) (SERIES X1) «> (REP READY CONT)
(DEP (PNUM 2) (COUNTS 0)) (OBSERVES X1 ?)

2 (READY) => (ATTEND SERIES) (DEP (PERIOD 1))

3 (COUNT) (COUNTS X1) «> (REM (COUNT))
(REP X1 X1")

4.(0 X1 7) «> (SUCC)

5. (FAIL) (PERIOD X1) (SERIES X2) o> (ERASE)
(CLEAR) (DEP (READY) (PERIOD X1') (SERIES X2))

6 (PERIOD X1) (COUNTS X1') (SERIES X2) >
(ERASE) (CLEAR)
(DEP (READY) (PERIOD X1') (SERIES X2))

7 (NEXT X1) - (X2 ?) - (ACTION) > (SAY X1)
(BEP (MATCH) (X1 7)) (3TOP)

8 (NEXT X1) (USED) (ACTION (USED) (DEP (NEXT X1)))
- (MATCH) - (ERROR) «> (DEP (MATCH))

9 (X1 X2 ?) (NEXT) - (DONE) o>
(DEP (OLD (X1 X2 ?))) (DEP (DONE))

10. (USED (X1 X2 7)) «> (REP USED OLD)
(DEP (X1 X2 7))

11 (OLD (X1 X2 ?)) «> (REP OLD COND)

12 (MATCH) (NEXT X1) (SERIES X2) (LOC X3) >
(REP (NEXT X1) CONT 2)
(REM (MATCH) (DONE) (LOC X3)) (PROD (SERIES X2))

13 (LOC X1) (NEXT X2) (PERIOD X3) (SERIES X4)
(COUNTS XS) «> (REM (LOC X1) (DONE) (ERROR))
(REP (NEXT X2) CONT) (PRODS (LOC X1) X3 X4 XS)

14 (CONT) (X1 7) (PNUM X2) (X37) «>
(REP X1 (0 X1) 2) (REP X2 X2' 3) (REM (CONT))
(ACTION (USED) (DEP (NEXT X3)) (DEP (LOC X2)))

15 (CONT) (X1 7) => (REP X1 (0 X1) 2)
(REM (CONT))

16 (1 X17?) «> (DEP (NEXT X1) (LOC 1))

ofire

2
OUTPUT FOR (ATTEND SERIES) « (dep (seriee ebmcdmef))
11441691113
NOW INSERTING
(1 X17) «> (USED) (DEP (NEXT X1')) (DEP (LOC 2))
ON LINE 155

3144155910111} 13

i o

e




NOW INSERTING

(2X17?)(1X27?) «> (USED) (DEP (NEXT M)) (DEP (LOC 3))
ON LINE 153

511441691113

NOW INSERTING

(1 X17?) => (USED) (DEP (NEXT B)) (DEP (LOC 2)) (DEP (ERROR))
ON LINE 155

144 155910111113
NOW INSERTING

(2 X17?) (1 X27) «> (USED) (DEP (NEXT M)) (DEP (LOC 3))
ON LINE 153

511441691113
NOW INSERTING

(1 X17?7) => (USED) (DEP (NEXT B)) (DEP (LOC 2)) (DEP (ERROR))
ON LINE 155

14415591011 1113

NOW INSERTING '

(2X17) (1 X27) > (USED) (DEP (NEXT M)) (DEP (LOC 3)) (DEP (ERROR))
ON LINE 153

1441539101011111113

NOW INSERTING

(3X17?)(2X27) (1 X37?) «> (USED) (DEP (NEXT X1")) (DEP (LOC 4))
ON LINE 152

31441528910101011 11 1111121441529101010 11 11 11 1113
NOW INSERTING

(4X17?7)(3M7?) (2X37) (1 X1"7) «> (USED) (DEP (NEXT M)) (DEP (LOC 6))
ON LINE 151
314415289101010111111111214415289101010 11 1111
11121541517

M

ofire
91010101011 11 11 1111121541527
G

ofire
9101010111111 11121541527
H

+display 15-16
15. (CONT) (X1 7) => (REP X1 (0 X1) 2)
(REM (CONT))
15.1. (X1 7)) (3M7?) (2X37) (1 X1"?) «> (USED)
(DEP (NEXT M)) (DEP (LOC 6))
15.2. (3 X1 ?) (2 X2 ?) (1 X37) «> (USED)
(DEP (NEXT X1")) (DEP (LOC 4))
15.3. (2 X1?) (1 X27?) => (USED) IDEP (NEXT M))
(DEP (LOC 3)) (DEP (ERROR))
155 (1 X1 ?) > (USED) (DEP (NEXT B))
(DEP (LOC 2)) (DEP (ERROR))
16. (1 X1 7) «> (DEP (NEXT X1) (LOC 1))

VII-2,




